Energy Condition, Modular Flow, and AdS/CFT

Black Holes and Holography Workshop,TSIMF, Jan 7-11, 2019

Huajia Wang
Kavli Institute for Theoretical Physics

arXiv:1806.10560; arXiv:1706.09432; JHEP 1609 038(2016)
S. Balakrishnan, T. Faulkner, R. Leigh, M. Li, Z. Khandker, O. Parrikar, H. Wang

Energy Conditions

What are they?

- unitarity of QM: positivity of total energy
- extended systems (QFT): local energy/momentum density
- constraints on energy/momentum density

$$
E=\int_{\mathcal{R}^{n}} d x^{n} \mathcal{E}(x) \geq 0
$$

Energy Conditions

Why do we care?

- classical: important in general relativity
- energy-momentum = spacetime geometry
- energy conditions = constraints on spacetime

Einstein's equations:

$$
G_{\mu \nu}=8 \pi T_{\mu \nu}
$$

Energy Conditions

Why do we care?

examples: Hawking, Ellis, 1973

- strong energy condition (SEC) $->$ singularity theorem
- null energy condition (NEC) $->$ horizon area theorem

$$
T_{a b} k^{a} k^{b} \geq 0
$$

Energy Conditions

What do we want?

in QM: QFTs in fixed background spacetime

- constraints on $\left\langle\hat{T}_{\mu \nu}\right\rangle_{\psi}$
- NEC violated by quantum effects: e.g. Casimir effect
- correct modification to NEC?
- two main conjectures:

Averaged Null Energy Condition (ANEC)

Quantum Null Energy Condition (QNEC)

AVERAGED NULL ENERGY CONDITION (ANEC)

$$
\int d \lambda\left\langle\hat{T}_{\mu \nu}\right\rangle_{\psi} k^{\mu} k^{\nu} \geq 0
$$

Why? violation leads to causality breakdown

- supports traversable wormhole/time machine
M. Morris, K. Thorne, U. Yurtsever, PRL. 61. 13. 1988

QUANTUM NULL ENERGY CONDITION (QNEC)

$$
\left\langle\hat{T}_{\mu \nu}(y)\right\rangle_{\psi} k^{\mu} k^{\nu} \geq \partial_{\lambda}^{2} S_{A(\lambda)}(\psi)
$$

Motivation: generalized second law

Can we prove them in QFTs? How?

A brief history of proofs...

for specific types of theories:

- ANEC for free scalar and Maxwell fields;
G. Klinkhammer, 1991; L. Ford, T. Roman, 1995; A. Folacci, 1992
- ANEC for 2d massive QFTs;
R. Verch, 2000
- QNEC for free/super-renormalizable fields;

> R. Busso, Z. Fisher, J. Koeller,
> S. Leichenaber, A. Wall, 2015

A brief history of proofs...

for holographic theories (a broad class of CFTs):

- proof of ANEC using AdS/CFT: w. kelly, A. Wall, 2014
causality constraint in the bulk.
- proof of QNEC using AdS/CFT: J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017
entanglement wedge nesting (EWN)

Can we do better? Proofs for generic QFT/CFTs?

Can we do better? Proofs for generic QFT/CFTs?

Recent progresses...

Can we do better? Proofs for generic QFT/CFTs?

- ANEC in relativistic QFTs:
T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016
monotonicity of relative entropy

ANEC in CFTs:
T. Hartman, S. Kundu, A. Tajdini, 2016
causality of correlation functions in light-cone limit

- QNEC in CFTs:
S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017
causality of correlation function under modular flow

Plan of the talk:

- Review of AdS/CFT proofs (ANEC + QNEC)
- Summary of general field theory proofs (ANEC + QNEC)
- Bulk modular flow in AdS/CFT
- Conclusion/outlooks

Plan of the talk:

- Review of AdS/CFT proofs (ANEC + QNEC)

Summary of general field theory proofs (ANEC + QNEC)

Bulk modular flow in AdS/CFT

Proving ANEC using AdS/CFT $\quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0$

W. Kelly, A. Wall, 2014

Proving ANEC using AdS/CFT $\quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0$

$$
\begin{aligned}
\mathcal{L}_{\text {bulk }} & \geq \mathcal{L}_{\text {bdry }} \\
& \text { s. Gao, R. Wald, } 2000
\end{aligned}
$$

"bulk respects boundary causality"

Proving ANEC using AdS/CFT
 $$
\int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

$$
\mathcal{L}_{\text {bulk }} \geq \mathcal{L}_{\text {bdry }}
$$

S. Gao, R. Wald, 2000
"bulk respects boundary causality"

As a GR result, can be proved by assuming that the "ANEC" in the bulk theory is satisfied

Proving ANEC using AdS/CFT
 $$
\int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

$$
\mathcal{L}_{b u l k} \geq \mathcal{L}_{b d r y}
$$

S. Gao, R. Wald, 2000
"bulk respects boundary causality"

In AdS/CFT, via Fefferman-Graham gauge expansion:

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left\{d z^{2}+\left[\eta_{a b}+z^{d} \frac{16 \pi G}{d R^{d-1}}\left\langle T_{a b}\right\rangle_{\psi}+\mathcal{O}\left(z^{d+2}\right)\right] d x^{a} d x^{b}\right\}, \quad z \rightarrow 0
$$

Proving ANEC using AdS/CFT

$$
\int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

$$
\mathcal{L}_{\text {bulk }} \geq \mathcal{L}_{\text {bdry }}
$$

S. Gao, R. Wald, 2000
"bulk respects boundary causality"

Gao-Wald's conclusion as consistent condition for holographic CFTs
$\lim z \rightarrow 0 \quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0 \quad$ boundary ANEC

Proving QNEC using AdS/CFT

$\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$
J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran,
S. Leichenaber, A. Levin, A. Moghaddam, 2017

Proving QNEC using AdS/CFT

$\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$
J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017
"bulk reconstruction in entanglement wedges"

AdS/CFT: bulk physics can be "reconstructed" from the boundary
how much bulk region can be reconstructed from CFT operators localized in $\mathrm{D}(\mathrm{A})$?
subregion duality

Proving QNEC using AdS/CFT

J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017
"bulk reconstruction in entanglement wedges"

strong evidence: entanglement wedge
X. Dong, D. Harlow, A. Wall, 2016

$$
\partial a=\Sigma \cup A
$$

Proving QNEC using AdS/CFT

$\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$
J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017
"bulk reconstruction in entanglement wedges"

> strong evidence: entanglement wedge
X. Dong, D. Harlow, A. Wall, 2016

$$
\partial a=\Sigma \cup A
$$

entanglement wedge $=\mathrm{D}(\mathrm{a})$

Proving QNEC using AdS/CFT

$\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$
J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017
"bulk reconstruction in entanglement wedges"

> strong evidence: entanglement wedge
X. Dong, D. Harlow, A. Wall, 2016

$$
\partial a=\Sigma \cup A
$$

entanglement wedge $=\mathrm{D}(\mathrm{a})$

$$
D(a) " \approx " D(A)
$$

Proving QNEC using AdS/CFT

$\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$
J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran,
S. Leichenaber, A. Levin, A. Moghaddam, 2017

Entanglement Wedge Nesting (EWN): $\quad D(\tilde{A}) \subseteq D(A) \rightarrow D(\tilde{a}) \subseteq D(a)$

Proving QNEC using AdS/CFT

J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017

Entanglement Wedge Nesting (EWN):

$$
D(\tilde{A}) \subseteq D(A) \rightarrow D(\tilde{a}) \subseteq D(a)
$$

at the boundary:
$\Delta u \geq 0$: null deformation

$$
D(\tilde{A}) \subseteq D(A)
$$

Proving QNEC using AdS/CFT

J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017

Entanglement Wedge Nesting (EWN):

$$
D(\tilde{A}) \subseteq D(A) \rightarrow D(\tilde{a}) \subseteq D(a)
$$

at the boundary:
$\Delta u \geq 0$: null deformation

$$
D(\tilde{A}) \subseteq D(A)
$$

into the bulk:

$$
\begin{aligned}
& \quad D(\tilde{a}) \subseteq D(a) \quad(\mathrm{EWN}) \\
& \Sigma_{\tilde{A}} \text { spacelike/nulı } \Sigma_{A} \\
& \text { RT surfaces dynamics }
\end{aligned}
$$

Proving QNEC using AdS/CFT

$$
\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}
$$

J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017

Entanglement Wedge Nesting (EWN):

$$
D(\tilde{A}) \subseteq D(A) \rightarrow D(\tilde{a}) \subseteq D(a)
$$

$$
\Sigma_{\tilde{A}} \text { spacelike//uul } \Sigma_{A}
$$

near boundary expansion:
(F-G gauge)

$$
g_{u u}=\frac{16 \pi G}{d R^{d-3}} z^{d-2}\left\langle T_{a b}\right\rangle_{\psi}+\mathcal{O}\left(z^{d}\right)
$$

$$
X_{\Sigma_{A}}^{i}(z)=X_{\partial A}^{i}+\frac{4 G}{d R^{d-1}} z^{d} \partial_{i} S_{E E}(A)+\mathcal{O}\left(z^{d+1}\right)
$$

$$
X_{\Sigma_{\tilde{A}}}^{i}(z)=X_{\partial \tilde{A}}^{i}+\frac{4 G}{d R^{d-1}} z^{d} \partial_{i} S_{E E}(\tilde{A})+\mathcal{O}\left(z^{d+1}\right)
$$

Proving QNEC using AdS/CFT

$$
\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}
$$

J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017

Entanglement Wedge Nesting (EWN):

$$
D(\tilde{A}) \subseteq D(A) \rightarrow D(\tilde{a}) \subseteq D(a)
$$

$$
\Sigma_{\tilde{A}} \text { spacelike/null } \Sigma_{A}
$$

$$
\begin{array}{r}
z \rightarrow 0 \\
\Delta u \rightarrow 0 \\
\left\langle T_{u u}\right\rangle_{\psi}-\partial_{u}^{2} S_{E E} \geq 0
\end{array}
$$

boundary QNEC

Plan of the talk:

Review of AdS/CFT proofs (ANEC + QNEC)

- Summary of general field theory proofs (ANEC + QNEC)

Bulk modular flow in AdS/CFT

Proving ANEC in relativistic QFTs $\quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0$
T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

$$
\text { Proving ANEC in relativistic QFTs } \quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

- difficult using conventional QFT techniques
- surprising origin in information theory
- manifested by probing the entanglement structure

$$
\text { Proving ANEC in relativistic QFTs } \quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

Modular Hamiltonian:

$$
\begin{aligned}
& K_{A}^{\Psi}=-\ln \rho_{A}^{\Psi} \otimes \mathbb{1}_{A^{c}}+\mathbb{1}_{A} \otimes \ln \rho_{A^{c}}^{\Psi}=H_{A}^{\Psi}-H_{A^{c}}^{\Psi} \\
& K_{A}^{\Psi}: \mathcal{H}_{\text {full }} \rightarrow \mathcal{H}_{\text {full }} \quad K_{A}^{\Psi}|\Psi\rangle=0
\end{aligned}
$$

$$
\text { Proving ANEC in relativistic QFTs } \quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

Modular Hamiltonian:

$$
\begin{aligned}
& K_{A}^{\Psi}=-\ln \rho_{A}^{\Psi} \otimes \mathbb{1}_{A^{c}}+\mathbb{1}_{A} \otimes \ln \rho_{A^{c}}^{\Psi}=H_{A}^{\Psi}-H_{A^{c}}^{\Psi} \\
& K_{A}^{\Psi}: \mathcal{H}_{\text {full }} \rightarrow \mathcal{H}_{\text {full }} \quad K_{A}^{\Psi}|\Psi\rangle=0
\end{aligned}
$$

- encodes more detailed entanglement data
- in general, complicated and non-local
- simplifies in special cases
e.g. $\Psi=|\mathrm{vac}\rangle, A=$ half-space, $K_{A}^{\Psi}=2 \pi \int d^{d-1} x x^{1} T_{00}=$ Rindler Hamiltonian

Proving ANEC in relativistic QFTs $\quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right)_{\psi} \geq 0$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

Monotonicity property:

$$
\tilde{A}=A+\vec{\xi}(y)
$$

$$
D(\tilde{A}) \subseteq D(A)
$$

$$
\left\langle K_{\tilde{A}}^{\mathrm{vac}}\right\rangle_{\psi} \leq\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi} \text { where } \psi \text { is arbitrary }
$$

Proving ANEC in relativistic QFTs
 $$
\int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0
$$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

Monotonicity property:

$$
\tilde{A}=A+\vec{\xi}(y)
$$

$$
D(\tilde{A}) \subseteq D(A)
$$

$\left\langle K_{\tilde{A}}^{\mathrm{vac}}\right\rangle_{\psi} \leq\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi}$ where ψ is arbitrary

Why? Monotonicity of relative entropy $S_{A}(\psi \mid \phi)=\operatorname{tr} \rho_{A}(\psi) \ln \left[\rho_{A}(\psi) / \rho_{A}(\phi)\right]$ measure of "distinguishability" $\rightarrow S_{\tilde{A}}(\psi \mid \phi) \leq S_{A}(\psi \mid \phi)$ for $D(\tilde{A}) \subseteq D(A)$ for special case of $|\phi\rangle=|\mathrm{vac}\rangle:\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi} \leq\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi}$

Proving ANEC in relativistic QFTs $\quad \int_{-\infty}^{\infty} d x^{+}\left\langle\hat{T}_{++}\right\rangle_{\psi} \geq 0$

T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

Monotonicity property:

$$
\tilde{A}=A+\vec{\xi}(y)
$$

$$
D(\tilde{A}) \subseteq D(A)
$$

$\left\langle K_{\tilde{A}}^{\mathrm{vac}}\right\rangle_{\psi} \leq\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi}$ where ψ is arbitrary
perturbation theory: $\quad A=$ half-space,$K_{A}^{\mathrm{vac}}=$ Rindler Hamiltonian
requiring $\left\langle K_{\tilde{A}}^{\mathrm{vac}}\right\rangle_{\psi} \leq\left\langle K_{A}^{\mathrm{vac}}\right\rangle_{\psi}$ for arbitrary null $\xi^{+}(\vec{y})>0$ "=" ANEC

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

- ANEC proof from entanglement structure
- alternative proof of ANEC from causality of correlation function
T. Hartman, S. Kundu, A. Tajdini, 2016
- combine entanglement structure + causality?
- proof of QNEC (stronger conjecture)!

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017
causality of correlation function: $\quad f(u, v) \propto\langle\psi| \mathcal{O}(u, v) \mathcal{O}(-u,-v)|\psi\rangle$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017
causality of correlation function: $\quad f(u, v) \propto\langle\psi| \mathcal{O}(u, v) \mathcal{O}(-u,-v)|\psi\rangle$

Causality: $\langle\psi|[\mathcal{O}, \mathcal{O}]|\psi\rangle=0$ for $u v<0$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017
causality of correlation function: $\quad f(u, v) \propto\langle\psi| \mathcal{O}(u, v) \mathcal{O}(-u,-v)|\psi\rangle$

Causality: $\langle\psi|[\mathcal{O}, \mathcal{O}]|\psi\rangle=0$ for $u v<0$
"dress" the correlator to probe entanglement structure? modular flow: $\mathcal{O} \rightarrow \mathcal{O}^{A}(s) \equiv e^{i s K_{A}^{\psi}} \mathcal{O} e^{-i s K_{A}^{\psi}}$
in general: highly non-local!

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

consider:

$$
\begin{gathered}
f(s)=\mathcal{N}^{-1}\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle \\
\mathcal{O}_{1}^{\tilde{A}}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{1} e^{-i s K_{A}^{\psi}} \\
\mathcal{O}_{2}^{A}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}
\end{gathered}
$$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

consider:

$$
\begin{gathered}
f(s)=\mathcal{N}^{-1}\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle \\
\mathcal{O}_{1}^{\tilde{A}}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{1} e^{-i s K_{A}^{\psi}} \\
\mathcal{O}_{2}^{A}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}
\end{gathered}
$$

Tomita-Takesaki theory (in algebraic QFT):

$$
\mathcal{O} \in \mathcal{M}_{A} \rightarrow \mathcal{O}^{A}(s) \in \mathcal{M}_{A}, \quad s \in \mathbb{R}
$$

\mathcal{M}_{A} : von Neumann algebra associated with A, i.e. operators supported in $D(A)$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

consider:

$$
\begin{gathered}
f(s)=\mathcal{N}^{-1}\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle \\
\mathcal{O}_{1}^{\tilde{A}}(s)=e^{i s K_{\tilde{A}}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{\psi}} \\
\mathcal{O}_{2}^{A}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}
\end{gathered}
$$

Tomita-Takesaki theory (in algebraic QFT):
$\mathcal{O}_{1}^{\tilde{A}}(s)$ is supported only in $D(\tilde{A})$

$$
\mathcal{O}_{2}^{A}(s) \text { is supported only in } D\left(A^{c}\right)
$$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

consider:

$$
\begin{gathered}
f(s)=\mathcal{N}^{-1}\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle \\
\mathcal{O}_{1}^{\tilde{A}}(s)=e^{i s K_{\tilde{A}}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{\psi}} \\
\mathcal{O}_{2}^{A}(s)=e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}
\end{gathered}
$$

Tomita-Takesaki theory (in algebraic QFT):
$\left[\mathcal{O}_{1}^{\tilde{A}}(s), \mathcal{O}_{2}^{A}(s)\right]=0$ for $s \in \mathbb{R}$
a subtler notion of causality:
hidden in entanglement structure!

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Outline of the proof:

1. Unitarity + Cauchy-Schwarz inequality:

$$
\operatorname{Re} f(s) \leq 1, \operatorname{Im} s= \pm \pi / 2
$$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Outline of the proof:

1. Unitarity + Cauchy-Schwarz inequality:

$$
\operatorname{Re} f(s) \leq 1, \operatorname{Im} s= \pm \pi / 2
$$

2. Causality: analytic continuation of $f(s)$ into the complex stripe $\{-\pi<\operatorname{Im} s<\pi\}$

Proving QNEC in general CFTs
 $\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Outline of the proof:

1. Unitarity + Cauchy-Schwarz inequality:

$$
\operatorname{Re} f(s) \leq 1, \operatorname{Im} s= \pm \pi / 2
$$

2. Causality: analytic continuation of $f(s)$ into the complex stripe $\{-\pi<\operatorname{Im} s<\pi\}$

3. Light-cone limit expansion: $v \rightarrow 0, u$ fixed

$$
\begin{aligned}
& f(s)=1+C_{T}^{-1} e^{s} u(-u v)^{\frac{d-2}{2}} \mathcal{I}_{Q}+\ldots \\
& \mathcal{I}_{Q}=\int_{0}^{\delta u} d u^{\prime} T_{u u}\left(u^{\prime}\right)+\left(\frac{\delta S_{E E}(A)}{\delta u}-\frac{\delta S_{E E}(\tilde{A})}{\delta u}\right)
\end{aligned}
$$

Proving QNEC in general CFTs $\quad\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Outline of the proof:
4. derive a sum rule (using the analytic continuation) + unitarity bound:

$$
\mathcal{I}_{Q} \propto \int_{\operatorname{Im} s= \pm \pi / 2} d s[1-\operatorname{Re} f(s)] \geq 0
$$

Proving QNEC in general CFTs
 $\left\langle T_{u u}\right\rangle_{\psi} \geq \partial_{u}^{2} S_{E E}$

S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017

Outline of the proof:
4. derive a sum rule (using the analytic continuation) + unitarity bound:

$$
\mathcal{I}_{Q} \propto \int_{\operatorname{Im} s= \pm \pi / 2} d s[1-\operatorname{Re} f(s)] \geq 0
$$

$$
\begin{aligned}
\mathcal{I}_{Q}= & \int_{0}^{\delta u} d u^{\prime} T_{u u}\left(u^{\prime}\right)+\left(\frac{\delta S_{E E}(A)}{\delta u}-\frac{\delta S_{E E}(\tilde{A})}{\delta u}\right) \approx \delta u\left(\left\langle T_{u u}\right\rangle_{\psi}-\partial_{u}^{2} S_{E E}\right) \geq 0 \\
& (\lim \delta u \rightarrow 0) \rightarrow\left(\left\langle T_{u u}\right\rangle_{\psi}-\partial_{u}^{2} S_{E E}\right) \geq 0 \quad \text { QNEC }
\end{aligned}
$$

Plan of the talk:

- Review of AdS/CFT proofs (ANEC + QNEC)

Summary of general field theory proofs (ANEC + QNEC)

- Bulk modular flow in AdS/CFT

Conclusion/outlooks

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary
- reproducible in generic CFTs (not necessarily holographic)

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary
- reproducible in generic CFTs (not necessarily holographic)
- the CFT proof: EWN (near boundary) in disguise

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary
- reproducible in generic CFTs (not necessarily holographic)
- the CFT proof: EWN (near boundary) in disguise
- modular flow in the boundary "knows" RT surface dynamics
e.g. T. Faulkner, A.Lewkowycz, 2017

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary
- reproducible in generic CFTs (not necessarily holographic)
- the CFT proof: EWN (near boundary) in disguise
- modular flow in the boundary "knows" RT surface dynamics
e.g. T. Faulkner, A.Lewkowycz, 2017
- understand this connection more explicitly

Bulk modular flow in AdS/CFT

- in holography, EWN near boundary = boundary QNEC
- "universality" of holography near boundary
- reproducible in generic CFTs (not necessarily holographic)
- the CFT proof: EWN (near boundary) in disguise
- modular flow in the boundary "knows" RT surface dynamics
e.g. T. Faulkner, A.Lewkowycz, 2017
- understand this connection more explicitly
- a concrete step: bulk approach for computing $f(s)$

Bulk modular flow in AdS/CFT

Revisit $\quad f(s) \propto\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle$
T. Faulkner, M. Li, H. Wang, 2018

Bulk modular flow in AdS/CFT

Revisit $\quad f(s) \propto\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle$
from "Heisenberg" to "Schrodinger" picture:

$f(s) \propto\langle\psi| e^{i s K_{A}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{\psi}} e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}|\psi\rangle$

Bulk modular flow in AdS/CFT

$$
\text { Revisit } \quad f(s) \propto\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle
$$

from "Heisenberg" to "Schrodinger" picture:

$$
\begin{aligned}
f(s) \propto\langle\psi| e^{i s K_{\tilde{A}}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}} e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}|\psi\rangle \\
\equiv\langle\psi| e^{i s H_{\tilde{A}}^{\psi}-i s H_{\tilde{A}^{c}}^{\psi}} \mathcal{O}_{1} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{\tilde{A}^{c}}^{\psi}} e^{i s H_{A}^{\psi}-i s H_{A^{c}}^{\psi}} \mathcal{O}_{2} e^{-i s H_{A}^{\psi}+i s H_{A c}^{\psi}}|\psi\rangle \\
\text { recall } K_{A}^{\psi}=H_{A}^{\psi} \otimes \mathbb{1}_{A^{c}}-\mathbb{1}_{A} \otimes H_{A^{c}}^{\psi}, H_{A, A^{c}}^{\psi}=\text { half-sided modular Hamiltonian }
\end{aligned}
$$

Bulk modular flow in AdS/CFT

$$
\text { Revisit } \quad f(s) \propto\langle\psi| \mathcal{O}_{1}^{\tilde{A}}(s) \mathcal{O}_{2}^{A}(s)|\psi\rangle
$$

from "Heisenberg" to "Schrodinger" picture:

$$
f(s) \propto\langle\psi| e^{i s K_{\tilde{A}}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{\psi}} e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}|\psi\rangle
$$

$$
\equiv\langle\psi| e^{i s H_{\tilde{A}}^{\psi}-i s H_{\tilde{A}^{c}}^{\psi}} \mathcal{O}_{1} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{\tilde{A}^{c}}^{\psi}} e^{i s H_{A}^{\psi}-i s H_{A^{c}}^{\psi}} \mathcal{O}_{2} e^{-i s H_{A}^{\psi}+i s H_{A}^{c}}|\psi\rangle
$$

$$
\text { recall } K_{A}^{\psi}=H_{A}^{\psi} \otimes \mathbb{1}_{A^{c}}-\mathbb{1}_{A} \otimes H_{A^{c}}^{\psi}, H_{A, A^{c}}^{\psi}=\text { half-sided modular Hamiltonian }
$$

$$
=\langle\psi| e^{-i s H_{A^{c}}^{\psi}+i s H_{\tilde{A}}^{\psi}} \mathcal{O}_{1} \mathcal{O}_{2} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{A^{c}}^{\psi}}|\psi\rangle \quad \text { using } \quad\left[H_{A^{c}, \tilde{A}^{c}}^{\psi}, \mathcal{O}_{1}\right]=0, \quad\left[H_{A, \tilde{A}}^{\psi}, \mathcal{O}_{2}\right]=0
$$

Bulk modular flow in AdS/CFT

from "Heisenberg" to "Schrodinger" picture:

$$
\begin{aligned}
& f(s) \propto\langle\psi| e^{i s K_{\tilde{A}}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{\psi}} e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}|\psi\rangle \\
& \equiv\langle\psi| e^{i s H_{\tilde{A}}^{\psi}-i s H_{\tilde{A}^{c}}^{\psi}} \mathcal{O}_{1} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{\tilde{A}^{c}}^{\psi}} e^{i s H_{A}^{\psi}-i s H_{A c}^{\psi}} \mathcal{O}_{2} e^{-i s H_{A}^{\psi}+i s H_{A}^{c}} \psi|\psi\rangle \\
& \text { recall } K_{A}^{\psi}=H_{A}^{\psi} \otimes \mathbb{1}_{A^{c}}-1_{A} \otimes H_{A^{c}}^{\psi} H_{A, A^{c}}^{\psi}=\text { half-sided modular Hamiltonian }
\end{aligned}
$$

$$
=\langle\psi| e^{-i s H_{A c}^{\psi}+i s H_{\tilde{A}}^{\psi}} \mathcal{O}_{1} \mathcal{O}_{2} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{A^{c}}^{\psi}}|\psi\rangle \quad \text { using } \quad\left[H_{A^{c}, \tilde{A}^{c}}^{\psi}, \mathcal{O}_{1}\right]=0,\left[H_{A, \tilde{A}}^{\psi}, \mathcal{O}_{2}\right]=0
$$

$$
=\langle\psi| e^{-i s H_{A}^{\psi}} e^{i s H_{A}^{\psi}} \mathcal{O}_{1} \mathcal{O}_{2} e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle \quad \text { recall } K_{A}^{\psi}|\psi\rangle=0 \rightarrow H_{A}^{\psi}|\psi\rangle=H_{A c}^{\psi}|\psi\rangle \text { etc }
$$

Bulk modular flow in AdS/CFT

$$
\begin{aligned}
& f(s) \propto\left.\propto \psi\left|e^{i s K_{\tilde{A}}^{\psi}} \mathcal{O}_{1} e^{-i s K_{\tilde{A}}^{*}} e^{i s K_{A}^{\psi}} \mathcal{O}_{2} e^{-i s K_{A}^{\psi}}\right| \psi\right\rangle \\
& \equiv\langle\psi| e^{i s H_{\tilde{A}}^{\psi}-i s H_{A^{c}}^{\psi}} \mathcal{O}_{1} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{\tilde{A}^{c}}^{\psi}} e^{i s H_{A}^{\psi}-i s H_{A^{c}}^{\psi}} \mathcal{O}_{2} e^{-i s H_{A}^{\psi}+i s H_{A^{c}}^{\psi}}|\psi\rangle \\
& \text { recall } K_{A}^{\psi}=H_{A}^{\psi} \otimes \mathbb{1}_{A^{c}}-\mathbb{1}_{A} \otimes H_{A^{c}}^{\psi}, H_{A, A^{c}}^{\psi}=\text { half-sided modular Hamiltonian }
\end{aligned}
$$

$$
=\langle\psi| e^{-i s H_{A c}^{\psi}+i s H_{\tilde{A}}^{\psi}} \mathcal{O}_{1} \mathcal{O}_{2} e^{-i s H_{\tilde{A}}^{\psi}+i s H_{A^{c}}^{\psi}}|\psi\rangle \quad \text { using } \quad\left[H_{A^{c}, \tilde{A}^{c}}^{\psi}, \mathcal{O}_{1}\right]=0,\left[H_{A, \tilde{A}}^{\psi}, \mathcal{O}_{2}\right]=0
$$

$$
=\langle\psi| e^{-i s H_{A}^{\psi}} e^{i s H_{A}^{\psi}} \mathcal{O}_{1} \mathcal{O}_{2} e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle \quad \text { recall } K_{A}^{\psi}|\psi\rangle=0 \rightarrow H_{A}^{\psi}|\psi\rangle=H_{A c}^{\psi}|\psi\rangle \text { etc }
$$

$$
=\left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \quad \text { where }\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle
$$

Bulk modular flow in AdS/CFT

So, in "Schrodinger" picture:

$$
\begin{aligned}
& f(s) \propto\left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \\
& \quad \text { where }\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle
\end{aligned}
$$

Bulk modular flow in AdS/CFT

So, in "Schrodinger" picture:

$$
\begin{aligned}
& f(s) \propto\left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \\
& \quad \text { where }\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle
\end{aligned}
$$

to use AdS/CFT, consider:

- in a holographic CFT
- bulk dual of $|\psi\rangle$ has smooth geometry
- conformal dimension Δ of $\mathcal{O}_{1,2}: 1 \ll \Delta \ll \ell_{A d S} / \ell_{\text {plank }}$

So, in "Schrodinger" picture:

$$
\begin{aligned}
& f(s) \propto\left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \\
& \quad \text { where }\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle
\end{aligned}
$$

Geodesic approximation:

$$
\begin{aligned}
& \langle\psi| \mathcal{O}_{1} \mathcal{O}_{2}|\psi\rangle \\
\approx & \exp \left[-m \mathcal{L}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

So, in "Schrodinger" picture:

$$
\begin{aligned}
& f(s) \propto\left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \\
& \quad \text { where }\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{\tilde{A}}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle
\end{aligned}
$$

Geodesic approximation:

$$
\begin{aligned}
& \left\langle\psi_{A, \tilde{A}}(s)\right| \mathcal{O}_{1} \mathcal{O}_{2}\left|\psi_{A, \tilde{A}}(s)\right\rangle \\
& \approx \exp \left[-m \mathcal{L}_{A, \tilde{A}}^{s}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

Bulk modular flow in AdS/CFT

consider a simpler case: $\left|\psi_{A}(s)\right\rangle=e^{i s H_{A}^{\psi}}|\psi\rangle$ i.e. "single modular flow"

Bulk modular flow in AdS/CFT

consider a simpler case: $\left|\psi_{A}(s)\right\rangle=e^{i s H_{A}^{\psi}}|\psi\rangle$ i.e. "single modular flow"

hint: for any \mathcal{O}_{A} supported only in $D(A):\left\langle\mathcal{O}_{A}\right\rangle_{\psi_{A}(s)}=\left\langle\mathcal{O}_{A}\right\rangle_{\psi}$

$$
\begin{aligned}
\left\langle\psi_{A}(s)\right| \mathcal{O}_{A}\left|\psi_{A}(s)\right\rangle & =\langle\psi| e^{-i s H_{A}^{\psi}} \mathcal{O}_{A} e^{i s H_{A}^{\psi}}|\psi\rangle=\langle\psi| e^{-i s H_{A}^{c}} \mathcal{O}_{A} e^{i s H_{A c}^{\psi}}|\psi\rangle \\
& =\langle\psi| e^{-i s H_{A^{c}}^{\psi}} e^{i s H_{A^{c}}^{\psi}} \mathcal{O}_{A}|\psi\rangle=\langle\psi| \mathcal{O}_{A}|\psi\rangle
\end{aligned}
$$

Bulk modular flow in AdS/CFT

consider a simpler case: $\left|\psi_{A}(s)\right\rangle=e^{i s H_{A}^{\psi}}|\psi\rangle$ i.e. "single modular flow"

hint: for any \mathcal{O}_{A} supported only in $D(A):\left\langle\mathcal{O}_{A}\right\rangle_{\psi_{A}(s)}=\left\langle\mathcal{O}_{A}\right\rangle_{\psi}$
similarly, for any $\mathcal{O}_{A^{c}}$ supported only in $D\left(A^{c}\right):\left\langle\mathcal{O}_{A^{c}}\right\rangle_{\psi_{A}(s)}=\left\langle\mathcal{O}_{A^{c}}\right\rangle_{\psi}$

Bulk modular flow in AdS/CFT

entanglement wedge reconstruction: $D(a) " \approx " D(A), D\left(a^{c}\right) " \approx " D\left(A^{c}\right)$

$$
\left|\psi_{A}(s)\right\rangle
$$

Bulk modular flow in AdS/CFT

entanglement wedge reconstruction: $D(a)$ " $\approx " D(A), D\left(a^{c}\right) " \approx " D\left(A^{c}\right)$

in entanglement wedges

$$
" \psi_{A}(s) \equiv \psi "
$$

e.g.

- same metric
- same bulk fields, etc

Bulk modular flow in AdS/CFT

entanglement wedge reconstruction: $D(a)$ " $\approx " D(A), D\left(a^{c}\right) " \approx " D\left(A^{c}\right)$

Bulk modular flow in AdS/CFT

entanglement wedge reconstruction: $D(a)$ " $\approx " D(A), D\left(a^{c}\right) " \approx " D\left(A^{c}\right)$

geodesic: a function of $\left\{x_{1}, x_{2}, s\right\}$
generic geodesics pass through both the entanglement and "Milne" wedges
we don't know what to do...

Bulk modular flow in AdS/CFT

entanglement wedge reconstruction: $D(a)$ " $\approx " D(A), D\left(a^{c}\right) " \approx " D\left(A^{c}\right)$

geodesic: a function of $\left\{x_{1}, x_{2}, s\right\}$
if we fine-tune one of the parameters:

$$
\text { e.g. } s=s\left(x_{1}, x_{2}\right)
$$

the geodesic avoids the Milne wedge, passes through Σ_{A}

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

- each segment $\left\{\mathcal{L}_{a}, \mathcal{L}_{a^{c}}\right\}$ is a geodesic in the original geometry $|\psi\rangle$

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

- each segment $\left\{\mathcal{L}_{a}, \mathcal{L}_{a^{c}}\right\}$ is a geodesic in the original geometry $|\psi\rangle$.
- modular flow affects the matching condition at Σ_{A}.

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

- each segment $\left\{\mathcal{L}_{a}, \mathcal{L}_{a^{c}}\right\}$ is a geodesic in the original geometry $|\psi\rangle$.
- modular flow affects the matching condition at Σ_{A}.
- JLMS (2015): $H_{A}^{\psi}(b d r y)=\frac{\hat{A}}{4 G}+H_{a}^{\psi}(b u l k)$.

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

- each segment $\left\{\mathcal{L}_{a}, \mathcal{L}_{a^{c}}\right\}$ is a geodesic in the original geometry $|\psi\rangle$.
- modular flow affects the matching condition at Σ_{A}.
- JLMS (2015): $H_{A}^{\psi}(b d r y)=\frac{\hat{A}}{4 G}+H_{a}^{\psi}(b u l k)$.
- \hat{A} is a constant in EW, $e^{i s H_{A}^{\psi}(b d r y)} \propto e^{i s H_{a}^{\psi}(b u l k)}$.

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

- each segment $\left\{\mathcal{L}_{a}, \mathcal{L}_{a^{c}}\right\}$ is a geodesic in the original geometry $|\psi\rangle$.
- modular flow affects the matching condition at Σ_{A}.
- JLMS (2015): $H_{A}^{\psi}(b d r y)=\frac{\hat{A}}{4 G}+H_{a}^{\psi}(b u l k)$.
- \hat{A} is a constant in EW, $e^{i s H_{A}^{\psi}(b d r y)} \propto e^{i s H_{a}^{\psi}(b u l k)}$
- bulk theory free (leading ordering $1 / \mathrm{N}$): close to Σ_{A} , $H_{a}^{\psi}(b u l k)$ acts like bulk Rindler Hamiltonian and generates boosts.

Bulk modular flow in AdS/CFT

So, what do we know about geodesics in the entanglement wedges (EW)?

matching condition: relative boost of rapidity S across Σ_{A}.

So, what do we know about geodesics in the entanglement wedges (EW)?

matching condition: relative boost of rapidity S across Σ_{A}.
modified notion of smoothness for curves across Σ_{A} in $\left|\psi_{A}(s)\right\rangle$.

So, what do we know about geodesics in the entanglement wedges (EW)?

matching condition: relative boost of rapidity S across Σ_{A}.
modified notion of smoothness for curves across Σ_{A} in $\left|\psi_{A}(s)\right\rangle$.
fine-tuning: identify $\xi \in \Sigma_{A}$ s.t. at ξ

$$
p_{\|}\left[\mathcal{L}\left(\xi, x_{1}\right)\right]=p_{\|}\left[\mathcal{L}\left(\xi, x_{2}\right)\right]
$$

then

$$
s\left(x_{1}, x_{2}\right)=\frac{1}{4 \pi} \ln \left(\frac{p_{u}\left[\mathcal{L}\left(\xi, x_{1}\right)\right]}{p_{v}\left[\mathcal{L}\left(\xi, x_{1}\right)\right]}\right)\left(\frac{p_{v}\left[\mathcal{L}\left(\xi, x_{2}\right)\right]}{p_{u}\left[\mathcal{L}\left(\xi, x_{2}\right)\right]}\right)
$$

So, what do we know about geodesics in the entanglement wedges (EW)?

We can extend this to the "double modular flow": $\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{A}^{\psi}} e^{i s H_{A}^{\psi}}|\psi\rangle$

Bulk modular flow in AdS/CFT

We can extend this to the "double modular flow": $\left|\psi_{A, \tilde{A}}(s)\right\rangle=e^{-i s H_{A}^{U}} e^{i s H_{A}^{\psi}}|\psi\rangle$

matching conditions at

$$
\begin{aligned}
& \quad \xi_{A} \in \Sigma_{A}, \xi_{\tilde{A}} \in \Sigma_{\tilde{A}} \\
& \text { select } s^{*}=s\left(x_{1}, x_{2}\right)
\end{aligned}
$$

in the near boundary limit $z \rightarrow 0$, successfully reproduced the CFT result in the light-cone limit $z \propto u v$

Bulk modular flow in AdS/CFT

Applications:

Mirror conjugation: $\quad \mathcal{O}^{J}=e^{\pi K \psi_{A}} \mathcal{O} e^{-\pi K \psi_{A}}=\mathcal{O}^{A}(i \pi) \quad$ K. Papadodimas, S. Raju, 2014
$f_{\pi} \propto\left\langle\mathcal{O}_{1}^{A}(i \pi) \mathcal{O}_{1}\right\rangle_{\psi}$ "single modular flow" with $s=i \pi$

$i \pi$ boost $=$ reflection

$$
\left\langle\mathcal{O}_{1}^{J} \mathcal{O}_{1}\right\rangle_{\psi} \approx \exp \left[-2 m \mathcal{L}\left(\xi_{A}, x_{1}\right)\right]
$$

Bulk modular flow in AdS/CFT

Applications:

Mirror conjugation: $\quad \mathcal{O}^{J}=e^{\pi K \psi_{A}} \mathcal{O} e^{-\pi K \psi_{A}}=\mathcal{O}^{A}(i \pi) \quad$ K. Papadodimas, S. Raju, 2014
$f_{\pi} \propto\left\langle\mathcal{O}_{1}^{A}(i \pi) \mathcal{O}_{1}\right\rangle_{\psi}$ "single modular flow" with $s=i \pi$

$$
\begin{gathered}
i \pi \text { boost }=\text { reflection } \\
\left\langle\mathcal{O}_{1}^{J} \mathcal{O}_{1}\right\rangle_{\psi} \approx \exp \left[-2 m \mathcal{L}\left(\xi_{A}, x_{1}\right)\right]
\end{gathered}
$$

RT surface serves as a mirror for implementing conjugation

Bulk modular flow in AdS/CFT

Applications:

entanglement wedge nesting (EWN)
consider: $f(s) \propto\left\langle\mathcal{O}_{1}^{\tilde{A}}(s+i \pi) \mathcal{O}_{1}^{A}(s)\right\rangle_{\psi}, \tilde{A}=A+\delta A$
for $\delta A \rightarrow 0, f(s)=\left\langle\mathcal{O}_{1}^{J} \mathcal{O}_{1}\right\rangle_{\psi} \approx \exp \left[-2 m \mathcal{L}\left(\xi_{A}, x_{1}\right)\right]$ for all s

$$
\begin{gathered}
-m^{-1} \ln \left[\frac{\left\langle\mathcal{O}_{1}^{\tilde{A}}(s+i \pi) \mathcal{O}_{1}^{A}(s)\right\rangle_{\psi}}{\left\langle\mathcal{O}_{1}^{A}(i \pi) \mathcal{O}_{1}\right\rangle_{\psi}}\right] \\
\approx \mathcal{L}\left(\xi_{\tilde{A}}, \xi_{A}\right)+\mathcal{O}\left(\delta A^{2}\right)
\end{gathered}
$$

Bulk modular flow in AdS/CFT

Applications:

entanglement wedge nesting (EWN)
consider: $f(s) \propto\left\langle\mathcal{O}_{1}^{\tilde{A}}(s+i \pi) \mathcal{O}_{1}^{A}(s)\right\rangle_{\psi}, \tilde{A}=A+\delta A$
for $\delta A \rightarrow 0, f(s)=\left\langle\mathcal{O}_{1}^{J} \mathcal{O}_{1}\right\rangle_{\psi} \approx \exp \left[-2 m \mathcal{L}\left(\xi_{A}, x_{1}\right)\right]$ for all s

EWN in CFT (for $|\delta A| \ll|A|$)

$$
\max \left\{\ln \left[\frac{\left\langle\mathcal{O}_{1}^{\tilde{A}}(s+i \pi) \mathcal{O}_{1}^{A}(s)\right\rangle_{\psi}}{\left\langle\mathcal{O}_{1}^{A}(i \pi) \mathcal{O}_{1}\right\rangle_{\psi}}\right], s \in \mathbb{R}\right\} \leq 0
$$

for space-like δA

Bulk modular flow in AdS/CFT

Applications:

entanglement wedge nesting (EWN)
consider: $f(s) \propto\left\langle\mathcal{O}_{1}^{\tilde{A}}(s+i \pi) \mathcal{O}_{1}^{A}(s)\right\rangle_{\psi}, \tilde{A}=A+\delta A$
for $\delta A \rightarrow 0, f(s)=\left\langle\mathcal{O}_{1}^{J} \mathcal{O}_{1}\right\rangle_{\psi} \approx \exp \left[-2 m \mathcal{L}\left(\xi_{A}, x_{1}\right)\right]$ for all s

in Tomita-Takaseki theory:
can be derived from

$$
|U(t)| \leq 1, U(t)=e^{-i K_{\tilde{A}}^{\psi} t} e^{i K_{A}^{\psi} t}
$$

Conclusion/Outlook

- general proofs of energy conditions in QFTs
- physical picture encoded in the entanglement structures (modular flow)
- holographic proof of QNEC using EWN: RT surface dynamics
- boundary modular flow "knows" about these...
- prescription for (fine-tuned classes of) modular flows in AdS/CFT

Conclusion/Outlook

Future directions:

- what happens in the "Milne wedges"?
- $1 / \mathrm{N}$ corrections to the prescription
- other bulk constraints from boundary modular flow, e.g. quantum focusing conjecture (QFC)?

Thank you!

