Higher Spin and Yangian

Wei Li
Institute of Theoretical Physics, Chinese Academy of Sciences

Sanya, 2019/01/07

Reference

1. Higher Spins and Yangian Symmetries

JHEP 1704, 152 (2017), [arXiv:1702.05100]
with Matthias Gaberdiel, Rajesh Gopakumar, and Cheng Peng
2. Twisted sectors from plane partitions

JHEP 1609, 138 (2016), [arXiv:1606.07070] with Shouvik Datta, Matthias Gaberdiel, and Cheng Peng
3. The supersymmetric affine yangian

JHEP 1805, 200 (2018), [arXiv:1711.07449]
with Matthias Gaberdiel, Cheng Peng, and Hong Zhang
4. Twin plane partitions and $\mathcal{N}=2$ affine yangian JHEP 1811, 192 (2018), [arXiv:1807.11304] with Matthias Gaberdiel and Cheng Peng

There is a large hidden symmetry in string theory

Different manifestation of stringy symmetry

Different manifestation of stringy symmetry

Integrable structure

Higher spin symmetry

Different manifestation of stringy symmetry

Integrable structure

A concrete relation between HS and integrability

Affine Yangian of $\mathbf{g l}(1)$

W symmetry

Application: plane partition as representations of \mathcal{W}_{∞}

Two questions

1. Supersymmetrize \triangle ?
2. \triangle as lego pieces for new VOA/affine Yangian?

A surprising (partial) answer
Glue two \triangle to get $\mathcal{N}=2$ version of \triangle

Gluing

$\mathcal{N}=2$ version?

New Yangian algebra from W algebra

Finite truncation of affine Yangian of $\mathfrak{g l}_{1}$

- gives chiral algebra of Y-junction
- Gluing of these finite truncations should give chiral algebra of Y-junction webs

Rapcak Prochazka'17

5-brane junction with D3 brane interfaces

$$
\times \underset{x_{0}, x_{1}}{C} \times \stackrel{R^{3}}{x_{7}, x_{8}, x_{9}}
$$

picture: Gaiotto Rapcak '17
conjecture: VOA on the 2D junction of 4D QFT

Gluing and $\mathcal{N}=2$ affine Yangian

Gluing and $\mathcal{N}=2$ affine Yangian

Gluing and $\mathcal{N}=2$ affine Yangian

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

Relation between W algebra and affine Yangian

Affine Yangian of $\mathbf{g l}(1)$

Modes of $\mathcal{W}_{1+\infty}$

$$
W^{(s)}(z)=\sum_{n \in \mathbb{Z}} \frac{W_{n}^{(s)}}{z^{n+s}} \quad s=1,2,3, \ldots
$$

spin-5	\ldots	X_{-4}	X_{-3}	X_{-2}	X_{-1}	X_{0}	X_{1}	X_{2}	X_{3}	X_{4}
spin-4	\cdots	U_{-4}	U_{-3}	U_{-2}	U_{-1}	U_{0}	U_{1}	U_{2}	U_{3}	U_{4}
spin-3	\cdots	W_{-4}	W_{-3}	W_{-2}	W_{-1}	W_{0}	W_{1}	W_{2}	W_{3}	W_{4}
spin-2	\cdots	L_{-4}	L_{-3}	L_{-2}	L_{-1}	L_{0}	L_{1}	L_{2}	L_{3}	L_{4}
spin-1	\cdots	J_{-4}	J_{-3}	J_{-2}	J_{-1}	J_{0}	J_{1}	J_{2}	J_{3}	J_{4}

Regrouping the modes

$$
W^{(s)}(z)=\sum_{n \in \mathbb{Z}} \frac{W_{n}^{(s)}}{z^{n+s}} \quad s=1,2,3, \ldots
$$

| \vdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| spin-5 | \cdots | X_{-3} | X_{-2} | $X_{-1} \sim e_{4}$ | $X_{0} \sim \psi_{5}$ | $X_{1} \sim f_{4}$ | X_{2} | X_{3} | X_{4} |
| spin-4 | \cdots | U_{-3} | U_{-2} | $U_{-1} \sim e_{3}$ | $U_{0} \sim \psi_{4}$ | $U_{1} \sim f_{3}$ | U_{2} | U_{3} | U_{4} |
| spin-3 | \cdots | W_{-3} | W_{-2} | $W_{-1} \sim e_{2}$ | $W_{0} \sim \psi_{3}$ | $W_{1} \sim f_{2}$ | W_{2} | W_{3} | W_{4} |
| spin-2 | \cdots | L_{-3} | L_{-2} | $L_{-1} \sim e_{1}$ | $L_{0} \sim \psi_{2}$ | $L_{1} \sim f_{1}$ | L_{2} | L_{3} | L_{4} |
| spin-1 | \cdots | J_{-3} | J_{-2} | $J_{-1} \sim e_{0}$ | $J_{0} \sim \psi_{1}$ | $J_{1} \sim f_{0}$ | J_{2} | J_{3} | J_{4} |

affine Yangian generators

$$
e(z)=\sum_{j=0}^{\infty} \frac{e_{j}}{z^{j+1}} \quad \psi(z)=1+\sigma_{3} \sum_{j=0}^{\infty} \frac{\psi_{j}}{z^{j+1}} \quad f(z)=\sum_{j=0}^{\infty} \frac{f_{j}}{z^{j+1}}
$$

Affine Yangian of $\mathfrak{g l}_{1}$

Def: Associative algebra with generators e_{j}, f_{j} and $\psi_{j}, j=0,1, \ldots$

- Generators

$$
\psi(z)=1+\left(h_{1} h_{2} h_{3}\right) \sum_{j=0}^{\infty} \frac{\psi_{j}}{z^{j+1}} \quad e(z)=\sum_{j=0}^{\infty} \frac{e_{j}}{z^{j+1}} \quad f(z)=\sum_{j=0}^{\infty} \frac{f_{j}}{z^{j+1}}
$$

- Parameters $\left(h_{1}, h_{2}, h_{3}\right)$ with $h_{1}+h_{2}+h_{3}=0$
- One \mathcal{S}_{3} invariant function $\varphi(z)=\frac{\left(z+h_{1}\right)\left(z+h_{2}\right)\left(z+h_{3}\right)}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)}$
- Defining relations

$$
\begin{array}{ll}
{[e(z), f(w)]=-\frac{1}{h_{1} h_{2} h_{3}} \frac{\psi(z)-\psi(w)}{z-w}} & \\
\psi(z) e(w) \sim \varphi(z-w) e(w) \psi(z) & \psi(z) f(w) \sim \varphi(w-z) f(w) \psi(z) \\
e(z) e(w) \sim \varphi(z-w) e(w) e(z) & f(z) f(w) \sim \varphi(w-z) f(w) f(z)
\end{array}
$$

Affine Yangian of $\mathfrak{g l}_{1}$

In terms of modes e_{j}, f_{j} and $\psi_{j}, j=0,1, \ldots$

$$
\begin{aligned}
0= & {\left[\psi_{j}, \psi_{k}\right] } \\
\psi_{j+k}= & {\left[e_{j}, f_{k}\right] } \\
\sigma_{3}\left\{\psi_{j}, e_{k}\right\}= & {\left[\psi_{j+3}, e_{k}\right]-3\left[\psi_{j+2}, e_{k+1}\right]+3\left[\psi_{j+1}, e_{k+2}\right]-\left[\psi_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, e_{k}\right]-\sigma_{2}\left[\psi_{j}, e_{k+1}\right] \\
-\sigma_{3}\left\{\psi_{j}, f_{k}\right\}= & {\left[\psi_{j+3}, f_{k}\right]-3\left[\psi_{j+2}, f_{k+1}\right]+3\left[\psi_{j+1}, f_{k+2}\right]-\left[\psi_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, f_{k}\right]-\sigma_{2}\left[\psi_{j}, f_{k+1}\right] \\
\sigma_{3}\left\{e_{j}, e_{k}\right\}= & \left.e_{j+3}, e_{k}\right]-3\left[e_{j+2}, e_{k+1}\right]+3\left[e_{j+1}, e_{k+2}\right]-\left[e_{j}, e_{k+3}\right] \\
& +\sigma_{2}\left[e_{j+1}, e_{k}\right]-\sigma_{2}\left[e_{j}, e_{k+1}\right] \\
-\sigma_{3}\left\{f_{j}, f_{k}\right\}= & {\left[f_{j+3}, f_{k}\right]-3\left[f_{j+2}, f_{k+1}\right]+3\left[f_{j+1}, f_{k+2}\right]-\left[f_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[f_{j+1}, f_{k}\right]-\sigma_{2}\left[f_{j}, f_{k+1}\right]
\end{aligned}
$$

with

$$
h_{1}+h_{2}+h_{3}=0 \quad \sigma_{2} \equiv h_{1} h_{2}+h_{2} h_{3}+h_{1} h_{3} \quad \sigma_{3} \equiv h_{1} h_{2} h_{3}
$$

Schiffmann Vasserot '12 Maulik Okounkov '12
Feigin Jimbo Miwa Mukhin '10-11
Tsymbaliuk '14

W algebra and affine Yangian

$$
\mathcal{V}\left[\widehat{\mathfrak{g r}_{1}}\right] \cong \operatorname{UEA}\left[\mathcal{W}_{1+\infty}[\lambda]\right]
$$

Gaberdiel Gopakumar Li Peng '17

for q-version $\mathcal{U}\left[\widehat{\mathfrak{g r}_{1}}\right] \cong \operatorname{UEA}\left[q-\mathcal{W}_{1+\infty}[\lambda]\right]$
Miki ${ }^{\prime} 07$
Feigin Jimbo Miwa Mukhin '10-11

Advantages of affine Yangian over \mathcal{W}_{∞}

1. number of generators

- $\mathcal{W}_{\infty}: \infty$

$$
J(z), T(z), W^{(3)}(z), W^{(4)}(z) \ldots
$$

- affine Yangian of $\mathfrak{g l}_{1}$: only 3

$$
\psi(z), e(z), f(z)
$$

2. Defining relations

- \mathcal{W}_{∞} :
non-linear, fixed order by order by Jacobi-identities
- affine Yangian of $\mathfrak{g l}_{1}$:
linear, given explicitly

3. \mathcal{S}_{3} invariance

- \mathcal{W}_{∞} : Hidden
- affine Yangian of $\mathfrak{g l}_{1}$: manifest

Plane partition as representations of affine Yangian

Plane partition via box stacking

Plane partition with non-trivial asymptotics

Ground state of $\left(\Lambda_{x}, \Lambda_{y}, \Lambda_{z}\right)$

Plane partition with non-trivial asymptotics

a level-7 excited states of $\left(\Lambda_{x}, \Lambda_{y}, \Lambda_{z}\right)$

Plane partitions are faithful representations of $\hat{\mathcal{Y}}\left(\mathfrak{g l}_{1}\right)$

Action of $\hat{\mathcal{Y}}\left(\mathfrak{g l}_{1}\right)$ on a plane partition

- $\psi(z)$ acts diagonally

$$
\begin{aligned}
\psi(z)|\Lambda\rangle= & \psi_{\Lambda}(z)|\Lambda\rangle \\
& \psi_{\Lambda}(z) \equiv\left(1+\frac{\psi_{0} \sigma_{3}}{z}\right) \prod_{\square \in(\Lambda)} \varphi(z-h(\square))
\end{aligned}
$$

$$
h(\square)=h_{1} x(\square)+h_{2} y(\square)+h_{3} z(\square)
$$

- $e(z)$ adds one box

$$
e(z)|\Lambda\rangle=\sum_{\square \in \operatorname{Add}(\Lambda)} \frac{\left[-\frac{1}{\sigma_{3}} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)}|\Lambda+\square\rangle
$$

- $f(z)$ removes one box

$$
f(z)|\Lambda\rangle=\sum_{\square \in \operatorname{Rem}(\Lambda)} \frac{\left[-\frac{1}{\sigma_{3}} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)}|\Lambda-\square\rangle
$$

plane partition as representations

Plane partition as representations of W

Trivial b.c.
vacuum

$\left(\Lambda_{x} ; 0\right)=(\Lambda ; 0)$
perturbative in Vasiliev

$\left(\Lambda_{x} ; \Lambda_{y}\right)=\left(\Lambda_{+} ; \Lambda_{-}\right) \quad\left(\Lambda_{x} ; \Lambda_{y} ; \Lambda_{z}\right)$
non-perturbative in Vasiliev

new representation
character of $\mathcal{W}_{1+\infty}=$ generating function of plane partition

Application

- Make S_{3} symmetry in \mathcal{W} CFT manifest
- Character computation more transparent

\mathcal{S}_{3} action on $\mathcal{W}_{N, k}$ coset

$\mathcal{W}_{N, k}$ coset

$$
\frac{\mathfrak{s u}(N)_{k} \oplus \mathfrak{s u}(N)_{1}}{\mathfrak{s u}(N)_{k+1}}
$$

had hidden \mathcal{S}_{3}

\mathcal{S}_{3} action on 't Hooft coupling

$\mathcal{W}_{N, k}$ coset

$$
\frac{\mathfrak{s u}(N)_{k} \oplus \mathfrak{s u}(N)_{1}}{\mathfrak{s u}(N)_{k+1}}
$$

't Hooft coupling $\lambda=\frac{N}{N+k}$ transform under \mathcal{S}_{3}

Triality symmetry for higher spin holography

For fixed c, three $\mathcal{W}_{\infty}[\lambda]$ are isomorphic

Triality symmetry for higher spin holography

For fixed c, three $\mathcal{W}_{\infty}[\lambda]$ are isomorphic

Crucial in Higher spin $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ (Vasiliev theory in $\mathrm{AdS}_{3}=\mathcal{W}_{N, k}$ coset)

- \mathcal{S}_{3} symmetry in \mathcal{W}_{∞} CFT is highly non-trivial
- hard to check/prove

Gaberdiel Gopakumar '12, Linshaw '17

- UV - IR
- Manifest in $\mathcal{Y}\left[\widehat{\mathfrak{g r}}_{1}\right]$
$\mathcal{Y}\left[\widehat{\mathfrak{g}}_{1}\right]$ depends on $\left(h_{1}, h_{2}, h_{3}\right)$ symmetrically

$$
h_{1}=-\sqrt{\frac{N+k+1}{N+k}} \quad h_{2}=\sqrt{\frac{N+k}{N+k+1}} \quad h_{3}=\frac{1}{\sqrt{(N+k)(N+k+1)}}
$$

Procházka '15, Gaberdiel Gopakumar Li Peng '17
Under \mathcal{S}_{3} transformation on (N, k)

\mathcal{S}_{3} symmetry of plane partition

The representations of \mathcal{W}_{∞} comes in \mathcal{S}_{3} family

Application

- Make S_{3} symmetry in \mathcal{W} CFT manifest
- Character computation more transparent

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

Bosonic W and affine Yangian

Two questions

1. Supersymmetrize \triangle ?
2. \triangle as lego pieces for new VOA/affine Yangian?

Rapcak Prochazka '17, Gaberdiel Li Peng Zhang'17

A surprising (partial) answer
Glue two \triangle to get $\mathcal{N}=2$ version of \triangle
Gaberdiel Li Peng Zhang'17

$\mathcal{N}=2$ version?

Constructing $\mathcal{N}=2$ version

1. Rewrite representations of $\mathcal{N}=2 \mathcal{W}_{\infty}$ in terms of (some version) of plane partitions

Twin plane partition

2. Define $\mathcal{N}=2$ affine Yangian such that

- twin plane partitions are faithful representations
- reproduce $\mathcal{N}=2 \mathcal{W}_{\infty}$ charges

$\mathcal{N}=2$ version

Simplest gluing: 2 vertices and 1 internal leg

Two copies: left and right

Gluing: two external legs facing opposite directions

Gluing: two external legs fuse and become internal leg

Building blocks and gluing

1. Algebra: $\quad \mathcal{W}_{1+\infty} \Rightarrow$ affine Yangian of $\mathfrak{g l}_{1}$
2. Representation: plane partitions
3. Algebra: \quad internal leg \Rightarrow additional operators
4. Representation:
bi-module: change b.c. for both vertices

Decomposing $\mathcal{N}=2 \mathcal{W}_{\infty}[\lambda]$

1. Bosonic sub-algebra

$$
\mathcal{W}_{1+\infty}[\lambda] \quad \oplus \quad \mathcal{W}_{1+\infty}[1-\lambda]
$$

2. Fermions:

$$
\left.\begin{array}{ll}
(\rho & , \\
\left(\rho^{t}\right.
\end{array}\right)
$$

Decomposing $\mathcal{N}=2 \mathcal{W}_{\infty}[\lambda]$

1. Bosonic sub-algebra

$\mathcal{W}_{1+\infty}[\lambda]$	\oplus	$\mathcal{W}_{1+\infty}[1-\lambda]$
\Downarrow		\Downarrow
$\widehat{\mathcal{Y}\left(\mathfrak{g l}_{1}\right)}$	\oplus	$\widehat{\mathcal{Y}\left(\mathfrak{g l}_{1}\right)}$
\Downarrow		\Downarrow

Left plane partition
2. Fermions:

$$
\left.\begin{array}{ll}
(\rho & , \\
\left(\rho^{t}\right.
\end{array}\right) .
$$

internal legs \Longrightarrow additional operators

TPP building blocks \Longrightarrow yangian generators

Bosonic sub-algebra $\widehat{\mathcal{Y}\left(\mathfrak{g l}_{1}\right)} \oplus \widehat{\mathcal{Y}\left(\mathfrak{g l}_{1}\right)}$

- ψ : Cartan of left $\widehat{\mathcal{Y}\left(\mathfrak{g l}_{1}\right)}$
- e / f : adds/removes \square

- $\hat{\psi}$: Cartan of right $\widehat{\mathcal{Y (g \mathfrak { g } _ { 1 })}}$
- \hat{e} / \hat{f} : adds/removes $\widehat{\square}$

Fermions $=$ internal legs $=$ additional operators

- x / y : adds/removes $\quad \equiv(\square, \bar{\square})$
- \bar{x} / \bar{y} : adds/removes $\quad \overline{\boldsymbol{\square}} \equiv(\square, \bar{\square})$

Fermionic building block-1: x $\equiv \square \equiv(\square, \bar{\square})$

$$
h=\frac{1}{2}(1+\lambda)
$$

$$
\hat{h}=\frac{1}{2}(1+(1-\lambda))
$$

$$
h+\hat{h}=\frac{3}{2}
$$

Fermionic building block-2: $\overline{\mathrm{x}} \equiv \bar{\square} \equiv(\bar{\square}, \square)$

$$
h=\frac{1}{2}(1+(1-\lambda)) \quad \hat{h}=\frac{1}{2}(1+\lambda)
$$

$$
h+\hat{h}=\frac{3}{2}
$$

Building blocks of bosonic affine Yangian of $\mathfrak{g l}_{1}$

Building blocks of bosonic affine Yangian of $\mathfrak{g l}_{1}$

A pair of bosonic affine Yangian of $\mathfrak{g l}_{1}$

Building blocks of $\mathcal{N}=2$ affine Yangian of $\mathfrak{g l}_{1}$

Constructing $\mathcal{N}=2$ version

1. Rewrite representations of $\mathcal{N}=2 \mathcal{W}_{\infty}$ in terms of (some version) of plane partitions

Twin plane partition

2. Define $\mathcal{N}=2$ affine Yangian such that

- twin plane partitions are faithful representations
- reproduce $\mathcal{N}=2 \mathcal{W}_{\infty}$ charges

Bosonic affine Yangian: $\varphi_{3}(z)$ plays central role

$$
\begin{gathered}
\psi(z) e(w) \sim \varphi_{3}(z-w) e(w) \psi(z) \quad \psi(z) f(w) \sim \varphi_{3}(w-z) f(w) \psi(z) \\
e(z) e(w) \sim \varphi_{3}(z-w) e(w) e(z) \quad f(z) f(w) \sim \varphi_{3}(w-z) f(w) f(z) \\
\varphi_{3}(z)=\frac{\left(z+h_{1}\right)\left(z+h_{2}\right)\left(z+h_{3}\right)}{\left(z-h_{1}\right)\left(z-h_{2}\right)\left(z-h_{3}\right)}
\end{gathered}
$$

- $\psi(z)|\Lambda\rangle=\psi_{\Lambda}(z)|\Lambda\rangle$

$$
\psi_{\Lambda}(z) \equiv\left(1+\frac{\psi_{0} \sigma_{3}}{z}\right) \prod_{\square \in \Lambda} \varphi_{3}(z-h(\square))
$$

Internal leg: $\varphi_{2}(z)$ build directly from $\varphi_{2}(z)$

$$
\begin{gathered}
\left\{\begin{array}{c}
\psi(z)=\left(1+\frac{\psi_{0} \sigma_{3}}{z}\right) \prod_{n=0}^{\infty} \varphi_{3}\left(z-n h_{2}\right)=\left(1+\frac{\psi_{0} \sigma_{3}}{z}\right) \varphi_{2}(z) \\
\hat{\psi}(z)=\left(1+\frac{\psi_{0} \sigma_{3}}{z}\right) \varphi_{2}^{-1}\left(-z-\sigma_{3} \hat{\psi}_{0}\right) \\
\varphi_{2}(z)=\frac{z\left(z+h_{2}\right)}{\left(z-h_{1}\right)\left(z-h_{3}\right)}
\end{array} .\right.
\end{gathered}
$$

Building $\mathcal{N}=2$ affine Yangian of $\mathfrak{g l} l_{1}$
 Gaberdiel Li Peng Zhang'17

Building $\mathcal{N}=2$ affine Yangian of $\mathfrak{g l}_{1}$

Gaberdiel Li Peng Zhang'17 Gaberdiel Li Peng '18

Building $\mathcal{N}=2$ affine Yangian of $\mathfrak{g l}_{1}$
 Gaberdiel Li Peng Zhang'17

 Gaberdiel Li Peng '18

Building $\mathcal{N}=2$ affine Yangian of $\mathfrak{g l}_{1}$

Gaberdiel Li Peng Zhang'17
Gaberdiel Li Peng '18

Lessons

- plane partition is also very useful in the gluing process
- visualize Fock space
- Define algebra by faithful representation

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

HS and integrability within stringy symmetry

W - affine Yangian - Plane partition

Applications of bosonic triangle

- Make S_{3} symmetry in \mathcal{W} CFT manifest
- Character computation more transparent

New affine Yangian via gluing

Open problems

1. large $\mathcal{N}=4 \mathcal{W}_{\infty}[\lambda]$
2. Classification of affine Yangians from gluing
3. Gluing of finite truncations

Gluing example: 4 vertices and 3 internal legs

More open problems

1. Deeper relation between higher spin symmetry and integrable structure ?
2. Mathematical description of stringy symmetry?
3. Application of stringy symmetry?

Thank you very much!

