0000000

Summary 00000 0000

Higher Spin and Yangian

Wei Li

Institute of Theoretical Physics, Chinese Academy of Sciences

Sanya, 2019/01/07

Introduction	W—Afl
0000000	00000
000	00000
Stringy symmetry	

Reference

1. Higher Spins and Yangian Symmetries

JHEP **1704**, 152 (2017), [arXiv:1702.05100] with Matthias Gaberdiel, Rajesh Gopakumar, and Cheng Peng

- Twisted sectors from plane partitions
 JHEP 1609, 138 (2016), [arXiv:1606.07070]
 with Shouvik Datta, Matthias Gaberdiel, and Cheng Peng
- 3. The supersymmetric affine yangian JHEP 1805, 200 (2018), [arXiv:1711.07449] with Matthias Gaberdiel, Cheng Peng, and Hong Zhang
- 4. Twin plane partitions and $\mathcal{N}=2$ affine yangian JHEP 1811, 192 (2018), [arXiv:1807.11304]

with Matthias Gaberdiel and Cheng Peng

Introduction
0000000
0000000

Summary 00000 0000

Stringy symmetry

There is a large hidden symmetry in string theory

Introduction
00000000
0000000

Summary 00000 0000

Stringy symmetry

Different manifestation of stringy symmetry

Introduction	
00000000	
0000000	

Summary 00000 0000

Stringy symmetry

Different manifestation of stringy symmetry

Introduction
00000000
0000000

Summary 00000 0000

Stringy symmetry

Different manifestation of stringy symmetry

Introduction
00000000
0000000

Summary 00000 0000

Stringy symmetry

Today

Introduction
00000000
0000000

Summary 00000 0000

Stringy symmetry

A concrete relation between HS and integrability

Summary 00000 0000

Stringy symmetry

Application: plane partition as representations of \mathcal{W}_∞

Introduction	W—Affine Yangian—Plane
00000000	0000000 -
000	0000000
Gluing	

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

A surprising (partial) answer

Glue two \bigtriangleup to get $\mathcal{N}=2$ version of \bigtriangleup

Introduction
000
0000000

Gluing

W—Affine Yangian—Plane Partition 0000000 00000000 00000000

Summary 00000 0000

 $\mathcal{N} = 2$ version?

Introduction

00000000 000 0000000

Gluing

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Summary 00000 0000

New Yangian algebra from W algebra

Introduction	W—Affine Yangian—Plane Partition	Gluing and
00000000 000 •000000	0000000 00000000 000000000	000000000000000000000000000000000000000
Corner chiral algeb	ra	

Summary 00000 0000

Finite truncation of affine Yangian of \mathfrak{gl}_1

Fukuda Matsuo Nakamura Zhu '15

Prochazka '15

gives chiral algebra of Y-junction

Gaiotto Rapcak '17

 Gluing of these finite truncations should give chiral algebra of Y-junction webs

Rapcak Prochazka'17

Introduction	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summary
0000000 000 000000	0000000 00000000 00000000	0000000000 00000 000000000000	00000
Corner chiral algebra			

5-brane junction with D3 brane interfaces

Gaiotto Rapcak '17

picture: Gaiotto Rapcak '17

conjecture: VOA on the 2D junction of 4D QFT

Higher Spin and Yangian

Introduction ○○○○○○○○ ○○●○○○○	W—Affine Yangian—Plane 0000000 00000000 00000000	Partition	Gluing and $\mathcal{N}=2$ affine Yangian 0000000000 00000 0000000000000000000	Summary 00000 0000
Corner chiral algebra				
	Representation	Plane partition		

Introduction	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summary
00000000 000 000•000	0000000 00000000 000000000	0000000000 00000 000000000000	00000
Corner chiral algebra			

Introduction	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summary
0000000 000 0000000	0000000 00000000 00000000	0000000000 00000 000000000000	00000
Corner chiral algebra			

Introduction	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summa
00000000 000 0000000	0000000 00000000 00000000	0000000000 00000 00000000000	00000
Corner chiral algeb	ra		

Introduction	W—Affine Yangian—Plane Partition 0000000 00000000 000000000	Gluing and $\mathcal{N}=2$ affine Yangian 000000000000000000000000000000000000	Summar: 00000 0000
Corner chiral algebra			

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

Introduction 00000000 000 0000000

W—Affine Yangian

W—Affine Yangian—Plane Partition ••••••••• ••••••••• •••••••• Summary 00000 0000

Relation between W algebra and affine Yangian

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summa
00000000	000000	000000000	00000 0000
0000000	00000000	000000000000	

Modes of $\mathcal{W}_{1+\infty}$

$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1,$	$2, 3, \ldots$
--	----------------

•	•	•	•	•	•		•	-	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
spin-5		X_{-4}	X_{-3}	X_{-2}	X_{-1}	X_0	X_1	X_2	X_3	X_4	
spin-4		U_{-4}	U_{-3}	U_{-2}	U_{-1}	U_0	U_1	U_2	U_3	U_4	
spin-3		W_{-4}	W_{-3}	W_{-2}	W_{-1}	W_0	W_1	W_2	W_3	W_4	
spin-2		L_{-4}	L_{-3}	L_{-2}	L_{-1}	L_0	L_1	L_2	L_3	L_4	
spin-1		J_{-4}	J_{-3}	J_{-2}	J_{-1}	J_0	J_1	J_2	J_3	J_4	

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	Summary
00000000 000	0000000 00000000	0000000000	00000
0000000	00000000	00000000000	

Regrouping the modes

$$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2, 3, \dots$$

				•					
:	:	:	:	:	:	:	:	:	:
spin-5		X_{-3}	X_{-2}	$X_{-1} \sim e_4$	$X_0 \sim \psi_5$	$X_1 \sim f_4$	X_2	X_3	X_4
spin-4		U_{-3}	U_{-2}	$U_{-1} \sim e_3$	$U_0 \sim \psi_4$	$U_1 \sim f_3$	U_2	U_3	U_4
spin-3		W_{-3}	W_{-2}	$W_{-1} \sim e_2$	$W_0 \sim \psi_3$	$W_1 \sim f_2$	W_2	W_3	W_4
spin-2		L_{-3}	L_{-2}	$L_{-1} \sim e_1$	$L_0 \sim \psi_2$	$L_1 \sim f_1$	L_2	L_3	L_4
spin-1		J_{-3}	J_{-2}	$J_{-1} \sim e_0$	$J_0 \sim \psi_1$	$J_1 \sim f_0$	J_2	J_3	J_4

affine Yangian generators

$$e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad \psi(z) = 1 + \sigma_3 \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affine Yangian	
00000000 000 0000000	0000000 0000000 00000000	0000000000 00000 00000000000	00000
W—Affine Yangian			

Affine Yangian of \mathfrak{gl}_1

<u>Def:</u> Associative algebra with generators e_j, f_j and $\psi_j, j = 0, 1, ...$

Generators

$$\psi(z) = 1 + (h_1 h_2 h_3) \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

- Parameters (h_1, h_2, h_3) with $h_1 + h_2 + h_3 = 0$
- One S_3 invariant function $\varphi(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$
- Defining relations

$$\begin{split} [e(z), f(w)] &= -\frac{1}{h_1 h_2 h_3} \frac{\psi(z) - \psi(w)}{z - w} \\ \psi(z) e(w) &\sim \varphi(z - w) e(w) \psi(z) \qquad \psi(z) f(w) \sim \varphi(w - z) f(w) \psi(z) \\ e(z) e(w) \sim \varphi(z - w) e(w) e(z) \qquad f(z) f(w) \sim \varphi(w - z) f(w) f(z) \end{split}$$

Introduction	
0000000	

W—Affine Yangian—Plane Partition 0000000 0000000 0000000 Summary 00000 0000

Affine Yangian of \mathfrak{gl}_1

In terms of modes e_j, f_j and $\psi_j, j = 0, 1, \ldots$

$$\begin{split} 0 = & [\psi_j, \psi_k] \\ \psi_{j+k} = & [e_j, f_k] \\ \sigma_3\{\psi_j, e_k\} = & [\psi_{j+3}, e_k] - 3[\psi_{j+2}, e_{k+1}] + 3[\psi_{j+1}, e_{k+2}] - [\psi_j, e_{k+3}] \\ & + \sigma_2[\psi_{j+1}, e_k] - \sigma_2[\psi_j, e_{k+1}] \\ -\sigma_3\{\psi_j, f_k\} = & [\psi_{j+3}, f_k] - 3[\psi_{j+2}, f_{k+1}] + 3[\psi_{j+1}, f_{k+2}] - [\psi_j, f_{k+3}] \\ & + \sigma_2[\psi_{j+1}, f_k] - \sigma_2[\psi_j, f_{k+1}] \\ \sigma_3\{e_j, e_k\} = & [e_{j+3}, e_k] - 3[e_{j+2}, e_{k+1}] + 3[e_{j+1}, e_{k+2}] - [e_j, e_{k+3}] \\ & + \sigma_2[e_{j+1}, e_k] - \sigma_2[e_j, e_{k+1}] \\ -\sigma_3\{f_j, f_k\} = & [f_{j+3}, f_k] - 3[f_{j+2}, f_{k+1}] + 3[f_{j+1}, f_{k+2}] - [f_j, f_{k+3}] \\ & + \sigma_2[f_{j+1}, f_k] - \sigma_2[f_j, f_{k+1}] \end{split}$$

with

$$h_1 + h_2 + h_3 = 0$$
 $\sigma_2 \equiv h_1 h_2 + h_2 h_3 + h_1 h_3$ $\sigma_3 \equiv h_1 h_2 h_3$

Schiffmann Vasserot '12 Maulik Okounkov '12

Feigin Jimbo Miwa Mukhin '10-11

Tsymbaliuk '14

Higher Spin and Yangian

000	

W—Affine Yangian—Plane Partition 000000 0000000 0000000 Summary 00000 0000

W algebra and affine Yangian

$\mathcal{Y}[\widehat{\mathfrak{gl}_1}] \cong \mathrm{UEA}[\mathcal{W}_{1+\infty}[\lambda]]$

Procházka '15

Gaberdiel Gopakumar Li Peng '17

for q-version $\mathcal{U}[\widehat{\widehat{\mathfrak{gl}}_1}] \cong \mathrm{UEA}[\mathrm{q}\text{-}\mathcal{W}_{1+\infty}[\lambda]]$ Miki '07

Feigin Jimbo Miwa Mukhin '10-11

0000000	

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Summary 00000 0000

Advantages of affine Yangian over \mathcal{W}_∞

- 1. number of generators
 - \mathcal{W}_{∞} : ∞

 $J(z), T(z), W^{(3)}(z), W^{(4)}(z) \dots$

• affine Yangian of \mathfrak{gl}_1 : only 3

$$\psi(z), e(z), f(z)$$

- 2. Defining relations
 - \mathcal{W}_{∞} :

non-linear, fixed order by order by Jacobi-identities

affine Yangian of gl₁:

linear, given explicitly

- 3. S_3 invariance
 - \mathcal{W}_{∞} : Hidden
 - affine Yangian of gl₁: manifest

Introduction 00000000 0000000 Plane partition Summary 00000 0000

Plane partition as representations of affine Yangian

Plane partition
000
00000000
Introduction

Summary 00000 0000

Plane partition via box stacking

Plane partition
000
00000000
Introduction

Summary 00000 0000

Plane partition with non-trivial asymptotics

Ground state of $(\Lambda_x, \Lambda_y, \Lambda_z)$

Plane partition
000
00000000
Introduction

Summary 00000 0000

Plane partition with non-trivial asymptotics

a level-7 excited states of $(\Lambda_x, \Lambda_y, \Lambda_z)$

Introduction 00000000 0000000 Plane partition Summary 00000 0000

Plane partitions are faithful representations of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$

	W—Affine Yangian—Plane Partition
00000000	0000000
0000000	00000000
Plane partition	

Summary 00000 0000

Action of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$ on a plane partition

 $\begin{array}{l} \flat \ \psi(z) \text{ acts diagonally} & Tsymboliuk '14, \ Prochazka '15 \\ \psi(z)|\Lambda\rangle = \psi_{\Lambda}(z)|\Lambda\rangle \\ \psi_{\Lambda}(z) \equiv \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{\square \in (\Lambda)} \varphi(z - h(\square)) \\ h(\square) = h_1 x(\square) + h_2 y(\square) + h_3 z(\square) \end{array}$

• e(z) adds one box

$$e(z)|\Lambda\rangle = \sum_{\square \in \mathrm{Add}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \mathrm{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)} |\Lambda + \square\rangle$$

• f(z) removes one box

$$f(z)|\Lambda\rangle = \sum_{\square\in \operatorname{Rem}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)}|\Lambda-\square\rangle$$

Wei Li

Higher Spin and Yangian

Plane partition

W—Affine Yangian—Plane Partition 00000000

Gluing and $\mathcal{N}=2$ affine Yangian

plane partition as representations

0000000
Plane partition

Summary 00000 0000

Plane partition as representations of W

vacuum

perturbative in Vasiliev

non-perturbative in Vasiliev new representation

character of $\mathcal{W}_{1+\infty}$ = generating function of plane partition

Summary 00000 0000

Application

Applications

Affine Yangian of gl(1)

Plane partitions

W symmetry

► Make S₃ symmetry in W CFT manifest

Character computation more transparent

	W—Affine Yangian—Plane Partition
	000000
	0000000
ations	

Applie

Summary 00000 0000

	W—Affine Y
0000000	000000
000	0000000
	0000000
Applications	

angian—Plane Partition

S_3 action on 't Hooft coupling

 $\mathcal{W}_{N,k}$ coset

 $\mathfrak{su}(N)_k \oplus \mathfrak{su}(N)_1$ $\mathfrak{su}(N)_{k+1}$ 't Hooft coupling $\lambda = \frac{N}{N+k}$ transform under S_3 $\frac{N}{N+k}$ σ_1 σ_2 $\frac{N}{N+k+1}$ σ_2 σ_1 Ň $\frac{N}{N+k+1}$ σ_1 σ_2 $\frac{N}{N+k}$

Wei Li

Introduction
0000000
Applications

Summary 00000 0000

Triality symmetry for higher spin holography

For fixed c, three $\mathcal{W}_{\infty}[\lambda]$ are isomorphic Gaberdiel Gopakumar '12

Crucial in Higher spin AdS_3/CFT_2 (Vasiliev theory in $AdS_3 = W_{N,k}$ coset)

	W—Affine Y
00	0000000
	000000000

Applications

Summary 00000 0000

- \blacktriangleright \mathcal{S}_3 symmetry in $\mathcal{W}_\infty\mathsf{CFT}$ is highly non-trivial
 - hard to check/prove

Gaberdiel Gopakumar '12, Linshaw '17

- ▶ UV IR
- Manifest in $\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$

Introduction 00000000 000 0000000	W—Affine Yangian—Plane Partition ○○○○○○○ ○○○○○○○○	Gluing and $\mathcal{N}=2$ affine Yangian 000000000000000000000000000000000000	Summary 00000 0000
Applications			
$\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$ depends on (h_1,h_2,h_3) symmetrically			

$$h_1 = -\sqrt{\frac{N+k+1}{N+k}} \qquad h_2 = \sqrt{\frac{N+k}{N+k+1}} \qquad h_3 = \frac{1}{\sqrt{(N+k)(N+k+1)}}$$

Procházka '15, Gaberdiel Gopakumar Li Peng '17

Under S_3 transformation on (N, k)

000
Applications

Summary 00000 0000

\mathcal{S}_3 symmetry of plane partition

The representations of \mathcal{W}_∞ comes in \mathcal{S}_3 family

Gluing and $\mathcal{N}=2$ affine Yangia

Summary 00000 0000

Application

Applications

Affine Yangian of gl(1)

Plane partitions

W symmetry

► Make S₃ symmetry in W CFT manifest

Character computation more transparent

0000000
$\mathcal{N} = 2 \mathcal{W}_{\infty}$

Summary 00000 0000

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N}=2$ affine Yangian

Summary

0000000
$\mathcal{M} = 2 \mathcal{W}$

Summary 00000 0000

Bosonic W and affine Yangian

0000000
N = 2 M

Two questions

1. Supersymmetrize \triangle ?

△ as lego pieces for new VOA/affine Yangian? Rapcak Prochazka '17, Gaberdiel Li Peng Zhang'17

A surprising (partial) answer

Glue two \triangle to get $\mathcal{N}=2$ version of \triangle

Gaberdiel Li Peng Zhang'17

	W—Aff
00000000	00000
000	00000
$\mathcal{N} = 2 \mathcal{W}_{\infty}$	

Summary 00000 0000

$\mathcal{N} = 2$ version?

0000000
$\mathcal{N} = 2 \mathcal{W}_{\infty}$

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N}=2$ \mathcal{W}_{∞} in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

Introduction
0000000
M = 2.142

Summary

$\mathcal{N}=2$ version

0000000	
$\mathcal{N} = 2 \mathcal{W}_{-}$	

Summary 00000 0000

Simplest gluing: 2 vertices and 1 internal leg

0000000
$M = 2 M^2$

Summary 00000 0000

Two copies: left and right

0000000
M = 2.142

Summary 00000 0000

Gluing: two external legs facing opposite directions

0000000
$\Lambda \ell = 2.1 \Lambda l$

Summary 00000 0000

Gluing: two external legs fuse and become internal leg

000
0000000
N = 2 W

Summary 00000 0000

Building blocks and gluing

1. Algebra: $\mathcal{W}_{1+\infty} \Rightarrow$ affine Yangian of \mathfrak{gl}_1 2. Representation:plane partitions

- 1. Algebra: internal leg \Rightarrow additional operators
- 2. Representation:

bi-module: change b.c. for both vertices

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Summary 00000 0000

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$

Gaberdiel Li Peng Zhang '17

- 1. Bosonic sub-algebra
 - $\mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$

2. Fermions:

$$(
ho \ , \ \overline{
ho^t})$$

 $(\overline{
ho^t} \ , \
ho)$

Introduction
0000000

Gluing and $\mathcal{N} = 2$ affine Yangian 0 = 0 = 0 = 00 = 0 = 0 = 0 Summary 00000 0000

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$

Gaberdiel Li Peng Zhang '17

1. Bosonic sub-algebra

2. Fermions: $(\rho \ , \ \rho^t)$ $(\overline{\rho^t} \ , \ \rho)$

internal legs \implies additional operators

Introduction
0000000

Summary 00000 0000

TPP building blocks \implies yangian generators

Bosonic sub-algebra $\mathcal{Y}(\mathfrak{gl}_1)$

 $\widehat{\mathcal{Y}(\mathfrak{gl}_1)} \oplus \widehat{\mathcal{Y}(\mathfrak{gl}_1)}$

ψ: Cartan of left ŷ(𝔅𝑢₁)
 e/f: adds/removes □

ψ̂: Cartan of right *ŷ*(𝔅𝑘₁)
 ê/*f̂*: adds/removes *¬*

Fermions = internal legs = additional operators

- x/y: adds/removes $\blacksquare \equiv (\square, \overline{\square})$
- \bar{x}/\bar{y} : adds/removes $\overline{\blacksquare} \equiv (\Box, \overline{\Box})$

Wei Li

Introduction
0000000

Gluing and $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Fermionic building block-1: $\mathbf{x} \equiv \mathbf{I} \equiv (\Box, \overline{\Box})$

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Fermionic building block-2: $\overline{\mathbf{x}} \equiv \overline{\mathbf{I}} \equiv (\overline{\Box}, \Box)$

$$h + \hat{h} = \frac{3}{2}$$

Introduction	
000	
0000000	

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

Introduction	
000	
0000000	

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

Introduction
0000000

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

A pair of bosonic affine Yangian of \mathfrak{gl}_1

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building blocks of $\mathcal{N}=2$ affine Yangian of \mathfrak{gl}_1

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N} = 2 \mathcal{W}_{\infty}$ in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Bosonic affine Yangian: $\varphi_3(z)$ plays central role

 $\begin{array}{lll} \psi(z) \, e(w) & \sim & \varphi_3(z-w) \, e(w) \, \psi(z) & & \psi(z) \, f(w) & \sim & \varphi_3(w-z) \, f(w) \, \psi(z) \\ e(z) \, e(w) & \sim & \varphi_3(z-w) \, e(w) \, e(z) & & f(z) \, f(w) & \sim & \varphi_3(w-z) \, f(w) \, f(z) \end{array}$

$$\varphi_3(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$$

 $\flat \psi(z)|\Lambda\rangle = \psi_{\Lambda}(z)|\Lambda\rangle$

$$\psi_{\Lambda}(z) \equiv \left(1 + rac{\psi_0 \sigma_3}{z}
ight) \prod_{\square \in \Lambda} arphi_3(z - h(\square))$$

Wei Li

Higher Spin and Yangian

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Internal leg: $\varphi_2(z)$ build directly from $\varphi_2(z)$

$$\begin{cases} \psi(z) &= \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{n=0}^{\infty} \varphi_3(z - nh_2) = \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \varphi_2(z) \\ \hat{\psi}(z) &= \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \varphi_2^{-1} (-z - \sigma_3 \hat{\psi}_0) \\ \\ \hline \varphi_2(z) &= \frac{z(z + h_2)}{(z - h_1)(z - h_3)} \end{cases}$$

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

W—Affine Yangian—Plane Partition 0000000 00000000 00000000 Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

Building $\mathcal{N} = 2$ affine Yangian of \mathfrak{gl}_1

Introduction
0000000

Gluing and $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

0000000

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary 00000 0000

- plane partition is also very useful in the gluing process
 - visualize Fock space
 - Define algebra by faithful representation
| 000 |
|---------|
| 0000000 |
| Summary |

Outline

Introduction

W—Affine Yangian—Plane Partition

Gluing and $\mathcal{N} = 2$ affine Yangian

Summary

Introduction
0000000
Summary

Summary

HS and integrability within stringy symmetry

0000000
Summary

Summary

W — affine Yangian — Plane partition

0000000
Summary

Summary 00000 0000

Applications of bosonic triangle

► Make S₃ symmetry in W CFT manifest

Character computation more transparent

0000000
Summary

Summary

New affine Yangian via gluing

Introduction	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ affi
00000000	0000000	00000000000
0000000	00000000	000000000000000000000000000000000000000
Future		

ne Yangian

Open problems

1. large
$$\mathcal{N} = 4 \mathcal{W}_{\infty}[\lambda]$$

- 2. Classification of affine Yangians from gluing
- 3. Gluing of finite truncations

0000000

Future

W—Affine Yangian—Plane Partition 0000000 00000000 00000000

Summary 00000 0000

Gluing example: 4 vertices and 3 internal legs

Introduction 00000000 000 0000000	W—Affine Yangian—Plane Partition 0000000 00000000 000000000	Gluing and $\mathcal{N}=2$ affine Yangian 000000000000000000000000000000000000
Future		

More open problems

1. Deeper relation between higher spin symmetry and integrable structure ?

2. Mathematical description of stringy symmetry?

3. Application of stringy symmetry?

Summarv

	W—Affine Yangian—Plane Partition	Gluing and $\mathcal{N}=2$ a
00000000	0000000	00000000000
0000000	00000000	000000000000000000000000000000000000000
Future		

ffine Yangian

Thank you very much !