SPIN AND HIGHER MULTIPOLE CORRECTIONS TO EMRIS

Jiang LONG

Asia Pacific Center for Theoretical Physics

Jan 10, 2019 TSIMF Sanya

CONTENTS

- Introduction \& motivation
- Assumptions
- MPD formalism
- Orbits
- Gravitational waves
- Conclusion \& discussion

INTRODUCTION \& MOTIVATION

- GR has passed varies tests, including deflection of light, precession of Mercury...
- Recently, gravitational waves, one of its prediction, has been detected by LIGO.
- Binary black hole (BBH) systems are perfect laboratory to test GR.
1)Newton gravity:
i) two-body problem, exactly solvable
ii) three-body problem?

2) Einstein gravity:
i) one-body problem, Schwarzchild, Kerr
ii) two-body problem, not easy to find an analytic solution
3) Gravitational waves are radiated from BBHs.

Masses in the Stellar Graveyard

in Solar Masses

INTRODUCTION \& MOTIVATION

- Two facts

1) the mass ratio of two BHs (NS): $\frac{M_{1}}{M_{2}} \approx 1$
2) The mass of the $B H$ in this picture: $M \sim 10 M_{\text {solar }}$, stellar black holes

- BHs:

1) Stellar black hole: gravitational collapse of a star , $1 \sim 10^{2} M_{\text {solar }}$
2) Intermediate mass black hole (IMBH): no strong evidence, $10^{2} \sim 10^{5} \mathrm{M}_{\text {solar }}$
3) Supermassive black hole (SMBH): center of galaxies, $10^{5} \sim 10^{9} M_{\text {solar }}$

INTRODUCTION \& MOTIVATION

- The parameter space of BBH: $m, S, M, J, l_{\text {orb }}, \ldots$
- LIGO just tests the region: $\frac{m}{M} \approx 1, M \approx 10 M_{\text {solar }}$
- Intermediate and extreme mass ratio: $\mathrm{q} \equiv \frac{m}{M} \ll 1$
- The small BH $m \approx M_{\text {solar }}$
- Intermediate mass ratio $q \approx\left(10^{-2} \sim 10^{-5}\right)$
- Extreme mass ratio

$$
q \approx\left(10^{-6} \sim 10^{-9}\right)
$$

- We will discuss the perturbation theory to compute gravitational wave in the region $q \ll 1$

ASSUMPTIONS

- Large BH

1) Near-extreme Kerr black hole (High spin Kerr black hole)
2) Near horizon region: emergence of conformal symmetry the last stage of black hole merger

- $\lambda=\sqrt{1-\frac{J^{2}}{M^{4}}} \ll 1$
J.Bardeen \&G.Horowitz (1999)
M.Guica, T.Hartman, W.Song \&A.Strominger (2009)

ASSUMPTIONS

- Coalescence of a binary black hole
- Three steps(phases):

1) Inspiral
2) Merger
3) Ringdown

- Large high spin Kerr black hole as a background
- Three patches of Kerr black hole

1) far region
2) NHEK region
3) near-NHEK region

KERR BLACK HOLE

- Three patches of a high spin Kerr black hole

Last stage of a small black hole Falls into a large high spin Kerr black hole is in NHEK and near-NHEK region

FAR REGION

- Far region

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M \hat{r}}{\Sigma}\right) d \hat{t}^{2}+\frac{\Sigma}{\Delta} d \hat{r}^{2}+\Sigma d \theta^{2}+\left(\hat{r}^{2}+a^{2}+\frac{2 M a^{2} \hat{r} \sin ^{2} \theta}{\Sigma}\right) \sin ^{2} \theta d \hat{\phi}^{2} \\
& -\frac{4 M a \hat{r} \sin ^{2} \theta}{\Sigma} d \hat{t} d \hat{\phi}
\end{aligned}
$$

where

$$
\Delta \equiv \hat{r}^{2}-2 M \hat{r}+a^{2}, \quad \Sigma \equiv \hat{r}^{2}+a^{2} \cos ^{2} \theta .
$$

$$
\hat{x} \equiv \frac{\hat{r}-\hat{r}_{+}}{\hat{r}_{+}}
$$

- $\hat{x} \ll 1$, near horizon region
- $\hat{x} \rightarrow \infty$, observer

NHEK REGION

- NHEK region

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left(-R^{2} d T^{2}+\frac{d R^{2}}{R^{2}}+d \theta^{2}+\Lambda^{2}(\theta)(d \Phi+R d T)^{2}\right)
$$

where

$$
\Gamma(\theta)=\frac{1+\cos ^{2} \theta}{2}, \quad \Lambda(\theta)=\frac{2 \sin \theta}{1+\cos ^{2} \theta}
$$

- It can be obtained by coordinate transformation and take the limit $\quad \lambda \rightarrow 0$

$$
\begin{aligned}
T & =\frac{\hat{t}}{2 M} \lambda^{2 / 3}, \\
R & =\frac{\hat{r}-\hat{r}_{+}}{M} \lambda^{-2 / 3}, \\
\Phi & =\hat{\phi}-\Omega_{e x t} \hat{t}, \quad \Omega_{\text {ext }} \equiv \frac{1}{2 M}
\end{aligned}
$$

NEAR-NHEK REGION

- Near-NHEK region

$$
d s^{2}=2 M^{2} \Gamma(\theta)\left(-r(r+2 \kappa) d t^{2}+\frac{d r^{2}}{r(r+2 \kappa)}+d \theta^{2}+\Lambda^{2}(\theta)(d \phi+(r+\kappa) d t)^{2}\right)
$$

It can be obtained by coordinate transformation and take the limit $\quad \lambda \rightarrow 0$

$$
\begin{aligned}
& r \rightarrow 0 \text {, horizon } \\
& r \rightarrow \infty, \text { attach to far region }
\end{aligned}
$$

$$
\begin{aligned}
t & =\frac{\hat{t}}{2 M \kappa} \lambda, \\
r & =\kappa \frac{\hat{r}-\hat{r}_{+}}{M \lambda}, \\
\phi & =\hat{\phi}-\frac{\hat{t}}{2 M},
\end{aligned}
$$

ASSUMPTIONS

- Small black hole
- 1) mass m (p^{μ})
- 2) spin $S \quad\left(S^{\rho \sigma}\right)$
- 3) black hole is not a point particle, it has a size!
- 4) As a first step, we ignore any backreaction from gravitational waves
- How to describe the movement of an extended object in curved spacetime?
- Generalization of geodesics

MATHISSON-PAPAPETROU-DIXON FORMALISM

- Geodesics of a point particle without spin $u^{\mu} \nabla_{\mu} u^{\rho}=0$
- A particle with momentum p and spin S (MP equation)
- $p^{\mu} \equiv \int T^{\mu \rho} d \Sigma_{\rho}, S^{\alpha \beta} \equiv \int\left(x^{\alpha}-z^{\alpha}\right) T^{\beta \gamma} d \Sigma_{\gamma}-(\alpha \leftrightarrow \beta)$
- Conservation of stress tensor

- Spin Supplementary Condition (SSC)

```
S }\mp@subsup{}{}{\mu\nu}\mp@subsup{p}{\nu}{}=
```


MATHISSON-PAPAPETROU-DIXON FORMALISM

- Evolution equations of an extended body
- Force and torque: presence of higher multipoles
- 2^{N} - pole: described by a fensor with N+2 indices
- $J_{\mu_{1} \mu_{N} \alpha \beta \gamma \delta}$ with symmetry structure

| $J^{\mu_{1} \mu_{N-2} \alpha \beta \gamma \delta}$ | $=J^{\left(\mu_{1} \mu_{N-2}\right)[\alpha \beta][\gamma \delta]}$, | |
| ---: | :--- | ---: | :--- |
| $J^{\mu_{1} \mu_{N-2} \alpha[\beta \gamma \delta]}$ | $=0$, | |
| $J^{\mu_{1} \mu_{N-3}\left[\mu_{N-2} \alpha \beta\right] \gamma \delta}$ | $=0, \quad$ for $\quad N \geq 3$ | |
| $n_{\mu_{1}} J^{\mu_{1} \mu_{N-2} \alpha \beta \gamma \delta}$ | $=0$, | for $\quad N \geq 3$ |

- $g_{\alpha \beta, \mu_{1} \cdots \mu_{N}}$: a extension of metric in the sense

$$
\begin{aligned}
\mathcal{F}^{\mu} & =\frac{1}{2} \sum_{N \geq 2} \frac{1}{N!} m^{\mu_{1} \cdots \mu_{N} \lambda \kappa} \nabla^{\mu} g_{\lambda \kappa, \mu_{1} \cdots \mu_{N}}, \\
\mathcal{L}^{\mu \nu} & =\sum_{N \geq 2} \frac{1}{(N-1)!} g^{\rho[\mu} m^{\nu] \mu_{1} \cdots \mu_{N-1} \alpha \beta} g_{\{\rho \mu, \nu\} \mu_{1} \cdots \mu_{N-1}}
\end{aligned}
$$

$$
\left.m^{\mu_{1} \cdots \mu_{N} \rho \sigma \kappa}=\frac{4 N}{N+2} J^{\left(\mu_{1} \cdots \mu_{N}|\sigma| \rho\right) \kappa} \right\rvert\,
$$

of Veblen and Thomas

$$
g_{\{\alpha \beta, \gamma\} \delta \cdots}=g_{\alpha \beta, \gamma \delta \cdots}-g_{\beta \gamma, \alpha \delta \cdots}+g_{\gamma \alpha, \beta \delta \cdots}
$$

MATHISSON-PAPAPETROU-DIXON FORMALISM

- Mass:

1) $\underline{m}^{2}=-p^{2}$
2) $m=-p \cdot u$

- In general, $\underline{m} \neq m$
- Spin:

$$
S_{\mu}=\frac{1}{2 \underline{m}} \epsilon_{\mu \alpha \beta \gamma} p^{\alpha} S^{\beta \gamma}
$$

- Spin length:

$$
S^{2}=\frac{1}{2} S_{\alpha \beta} S^{\alpha \beta}=S^{\mu} S_{\mu}
$$

- \underline{m}, m, S are not conserved in the presence of higher multipoles

MATHISSON-PAPAPETROU-DIXON FORMALISM

- Conserved quantities: Given a Killing vector ξ^{α} $Q_{\xi}=\xi_{\alpha} p^{\alpha}+\frac{1}{2} S^{\alpha \beta} \nabla_{\alpha} \xi_{\beta}$ is conserved even in the presence of multipoles
- Stress tensor: MPD equations are equivalent to $\nabla_{\mu} T^{\mu \rho}=0$
- Up to quadrupole,

$$
\begin{aligned}
\mathcal{F}^{\mu} & =-\frac{1}{6} J^{\alpha \beta \gamma \delta} \nabla^{\mu} R_{\alpha \beta \gamma \delta} \\
\mathcal{L}^{\mu \nu} & =\frac{4}{3} J^{\alpha \beta \gamma[\mu} R_{\gamma \alpha \beta}^{\nu]}
\end{aligned}
$$

- The stress tensor is

$$
\begin{aligned}
& T^{\mu \nu}=\int d \tau\left[\left(p^{(\mu} u^{\nu)}\right) \mathcal{D}+\frac{1}{3} R_{\alpha \beta \gamma}{ }^{(\mu} J^{\nu) \gamma \beta \alpha} \mathcal{D}-\nabla_{\alpha}\left(S^{\alpha(\mu} u^{\nu)} \mathcal{D}\right)-\frac{2}{3} \nabla_{\alpha} \nabla_{\beta}\left(J^{\alpha(\mu \nu) \beta} \mathcal{D}\right)\right] \\
& \mathcal{D}=\frac{1}{\sqrt{-g}} \delta^{(4)}\left(x^{\mu}-x_{*}^{\mu}(\tau)\right)
\end{aligned}
$$

QUADRUPOLE MODEL

- To solve MPD equations, one should construct explicit higher multipole model
- Some effects that could contribute to quadrupole

1) spin-induced quadrupole $S^{\alpha[\mu} p^{\nu]} S_{\alpha}^{[\rho} p^{\sigma]}$
2) gravito-electric tidal field induced quadrupole $p^{[\mu} E^{\nu][\rho} \rho^{\sigma]}$
3) gravito-magnetic tidal field induced quadrupole ($\left.p^{[\mu} Q^{\nu] \rho \sigma}+p^{[\sigma} Q^{\rho] \nu \mu}\right)$]

- The quadrupole is a linear combination of these terms

$$
J^{\mu \nu \rho \sigma}=\frac{m}{\underline{m}^{3}}\left[\frac{3 \kappa_{S^{2}}}{\underline{\mathrm{~m}}} S^{\alpha[\mu} p^{\nu]} S_{\alpha}^{[\rho} p^{\sigma]}+3 \mu_{2} p^{[\mu} E^{\nu][\rho} p^{\sigma]}+2 \sigma_{2}\left(p^{[\mu} Q^{\nu] \rho \sigma}+p^{[\sigma} Q^{\rho] \nu \mu}\right)\right]
$$

- J.Steinhoff \& D.Puetzfeld (2012)

$$
\begin{aligned}
Q^{\mu \nu \rho} & =\epsilon^{\rho{ }^{\rho}{ }_{\alpha \beta} p^{\alpha} B^{\mu \beta},} \\
E_{\mu \nu} & =\frac{1}{\underline{\mathrm{~m}}^{2}} R_{\mu \rho \nu \sigma} p^{\rho} p^{\sigma}, \\
B_{\mu \nu} & =\frac{1}{2 \mathrm{~m}^{2}} \epsilon_{\mu \alpha \beta \gamma} R_{\nu \delta}{ }^{\beta \gamma} p^{\alpha} p^{\delta}
\end{aligned}
$$

QUADRUPOLE MODEL

- Dimensional analysis

$$
\begin{aligned}
& {\left[x^{\mu}\right]=-1,[\tau]=-1,\left[p^{\mu}\right]=1,\left[u^{\mu}\right]=0,\left[S^{\mu \nu}\right]=0,\left[g_{\mu \nu}\right]=0,} \\
& {\left[R_{\nu \rho \sigma}^{\mu}\right]=2,\left[J^{\mu \nu \rho \sigma}\right]=-1,\left[G_{N}\right]=-2,[c]=0 .} \\
& {\left[k_{S^{2}}\right]=0,\left[\mu_{2}\right]=-3,\left[\sigma_{2}\right]=-3 .}
\end{aligned}
$$

- $\kappa_{S^{2}}=1$ for black hole, $\kappa_{S^{2}} \approx 5$ for neutron stars
W.Laarakkers \&E.Poisson (1999)
- \underline{m}, m are non - conserved, though they are equal up to $O\left(S^{3}\right)$
- μ is conserved up to $O\left(S^{3}\right)$, it is the mass term in perturbation theory
$\mu=m+\frac{\kappa_{S}{ }^{2}}{2 m} E_{\mu \nu} S_{\alpha}^{\mu} S^{\alpha \nu}+\frac{\mu_{2}}{4} E_{\mu \nu} E^{\mu \nu}+\frac{2}{3} \sigma_{2} B_{\mu \nu} B^{\mu \nu}$

CIRCULAR ORBIT

- Solve MPD equations in near-NHEK region to find the trajectory of the small BH
- Spinless case:

Equatorial plane

$$
\begin{aligned}
r & =r_{0}=\frac{2 \kappa \ell}{\sqrt{3\left(\ell^{2}-\ell_{*}^{2}\right)}}-\kappa, \\
\phi & =\phi_{0}-\frac{3}{4}\left(r_{0}+\kappa\right) t .
\end{aligned}
$$

- Spin and size effect: small mass ratio expansion

$$
q \equiv \frac{\mu}{M} \ll 1
$$

$$
\chi \equiv \frac{S}{\mu^{2}}
$$

\square

- In small q expansion, one can prove

$$
p^{\mu}=O\left(q^{1}\right), S^{\alpha \beta}=O\left(q^{2}\right), \mu_{2}=O\left(q^{5}\right), \sigma_{2}=O\left(q^{5}\right)
$$

- Gravito-electric and magnetic tidal deformations are higher order

CIRCULAR ORBIT

- Assumptions:

$$
r=r_{0}, \quad \theta=\frac{\pi}{2}, \quad \phi=-\alpha r_{0} t
$$

$$
\kappa_{0} \equiv \frac{\kappa}{r_{0}}
$$

$$
u^{t}=\frac{1}{M r_{0} \sqrt{8\left(1+\kappa_{0}\right) \alpha-\left(3+4 \alpha^{2}+6 \kappa_{0}+4 \kappa_{0}^{2}\right)}}, \quad u^{\phi}=-\alpha r_{0} u^{t}
$$

$$
S^{t r}=\frac{\left(1+\kappa_{0}\right) \chi q^{2}}{\lambda_{0}}\left(1+\frac{6\left(1+2 \kappa_{0}\right) \chi q}{\lambda_{0}^{2}}+\mathcal{O}\left(q^{2}\right)\right)
$$

$$
S^{r \phi}=\frac{r_{0} \kappa_{0}^{2} \chi q^{2}}{\lambda_{0}}\left(1+\frac{9\left(1+\kappa_{0}\right)^{2}\left(1+2 \kappa_{0}\right) \chi q}{2 \kappa_{0}^{2} \lambda_{0}^{2}}+\mathcal{O}\left(q^{2}\right)\right)
$$

$$
p^{t}=\frac{2 q}{r_{0} \lambda_{0}}\left(1+\frac{3\left(1+\kappa_{0}\right)^{2} \chi q}{2 \lambda_{0}^{2}}\right.
$$

$$
\left.+\frac{\left(3\left(1+\kappa_{0}\right)^{2}\left(6+12 \kappa_{0}+\kappa_{0}^{2}\right)+2\left(-9+\kappa_{0}\left(-36-36 \kappa_{0}+\kappa_{0}^{3}\right)\right) \kappa_{S^{2}}\right) \chi^{2} q^{2}}{2 \lambda_{0}^{4}}+\mathcal{O}\left(q^{3}\right)\right),
$$

$$
p^{\phi}=-\frac{3\left(1+\kappa_{0}\right) q}{2 \lambda_{0}}\left(1+\frac{2 \kappa_{0}^{2} \chi q}{\lambda_{0}^{2}}\right.
$$

$$
\left.+\frac{\left(2 \kappa_{S^{2}}\left(-9-36 \kappa_{0}-36 \kappa_{0}^{2}+\kappa_{0}^{4}\right)+9+36 \kappa_{0}+57 \kappa_{0}^{2}+42 \kappa_{0}^{3}+4 \kappa_{0}^{4}\right) \chi^{2} q^{2}}{2 \lambda_{0}^{4}}+\mathcal{O}\left(q^{3}\right)\right),
$$

CIRCULAR ORBIT

- Solution

$$
\begin{aligned}
\alpha= & \frac{3}{4}\left(1+\kappa_{0}\right)\left(1-\frac{\chi q}{2}+\frac{1}{4}\left(4 \kappa_{S^{2}}-5\right) \chi^{2} q^{2}+\mathcal{O}\left(q^{3}\right)\right) \\
e \equiv & \frac{Q_{-\partial_{t}}}{\mu}=-\frac{2 M r_{0} \kappa_{0}^{2}}{\lambda_{0}}\left(1+\frac{\left(9+18 \kappa_{0}+\kappa_{0}^{2}\right) \chi q}{2 \lambda_{0}^{2}}\right. \\
& \left.+\frac{\left(27\left(1+\kappa_{0}\right)^{2}\left(1+2 \kappa_{0}\right)+2\left(-9+\kappa_{0}\left(-36-36 \kappa_{0}+\kappa_{0}^{3}\right)\right) \kappa_{S^{2}}\right) \chi^{2} q^{2}}{2 \lambda_{0}^{4}}+\mathcal{O}\left(q^{3}\right)\right) \\
\ell \equiv & \frac{Q_{\partial_{\phi}}}{\mu}=\frac{2 M\left(1+\kappa_{0}\right)}{\lambda_{0}}\left(1+\frac{\left(3+\kappa_{0}\left(6+\kappa_{0}\right)\right) \chi q}{\lambda_{0}^{2}}\right. \\
& \left.+\frac{\left(2 \kappa_{S^{2}}\left(-9-36 \kappa_{0}-36 \kappa_{0}^{2}+\kappa_{0}^{4}\right)+9+36 \kappa_{0}+69 \kappa_{0}^{2}+66 \kappa_{0}^{3}\right) \chi^{2} q^{2}}{2 \lambda_{0}^{4}}+\mathcal{O}\left(q^{3}\right)\right), \\
\underline{\mathrm{m}}= & M q\left(1-\frac{\left(3+6 \kappa_{0}+\kappa_{0}^{2}\right) \kappa_{S^{2}} \chi^{2} q^{2}}{\lambda_{0}^{2}}+\mathcal{O}\left(q^{3}\right)\right) \\
\lambda_{0}= & \sqrt{3+6 \kappa_{0}-\kappa_{0}^{2}}
\end{aligned}
$$

NHEK: $\kappa_{0} \rightarrow 0$

CIRCULAR ORBIT

$$
\begin{aligned}
S^{t r} & =\frac{\ell \chi q^{2}}{\sqrt{3} \ell_{*}}(1+2 \chi q)+O\left(q^{4}\right), \\
S^{r \phi} & =-\frac{e \chi q^{2}}{\sqrt{3} \ell_{*}}\left(1+\frac{2 \chi q}{1-\frac{\ell_{*}^{2}}{\ell^{2}}}\right)+O\left(q^{4}\right), \\
p^{t} & =-\frac{\sqrt{3} \ell_{*} q}{2 e}\left(\frac{\ell^{2}}{\ell_{*}^{2}}-1\right)\left(1-\frac{\chi^{2} q^{2}}{2}\right)+O\left(q^{4}\right), \\
p^{\phi} & =-\frac{\sqrt{3} \ell q}{2 \ell_{*}}\left(1+\left(\frac{1}{2}-\kappa_{S^{2}}\right) \chi^{2} q^{2}\right)+O\left(q^{4}\right), \\
\underline{\mathrm{m}} & =M q\left(1-\frac{\kappa_{S^{2}}}{2}\left(\frac{\ell^{2}}{\ell_{*}^{2}}+1\right) \chi^{2} q^{2}\right)+O\left(q^{4}\right), \\
\frac{\alpha}{\kappa_{0}} & =\frac{\sqrt{3} \ell}{2 \sqrt{\ell^{2}-\ell_{*}^{2}}}\left(1+\frac{1}{2}\left(\kappa_{S^{2}}-1\right) \chi^{2} q^{2}\right)+O\left(q^{3}\right) . \\
\ell_{*}[\chi q] & \equiv \frac{2 M}{\sqrt{3}}\left(1+\chi q+\left(\frac{1}{2}-\kappa_{S^{2}}\right)(\chi q)^{2}\right)+O\left(q^{3}\right) .
\end{aligned}
$$

- l_{*} is the orbital angular momentum of NHEK circular orbit, critical angular momentum in near-NHEK

GENERAL EQUATORIAL ORBITS

- Conformal transformation: $\operatorname{SL}(2, R) \times U(1) \times P T$

1) preserve NHEK
2) preserve near-NHEK
3) $\mathrm{NHEK} \leftrightarrow$ near-NHEK

- Near-NHEK: Circular (l_{*}) NHEK: Circular.
- Spinless case: all plunging or osculating equatorial orbits entering into near-NHEK or NHEK are conformally related to a circular orbit.
G.Compere, K.Fransen, T.Hertog, J.Long (2017)
- MPD equations are covariant. We expect any equatorial orbit can be obtained by applying conformal maps.

GRAVITATIONAL WAVES

- Teukolsky equation, Linearized perturbation equation of Kerr black hole

$$
G_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}
$$

Newman-Penrose formalism

- two null vectors I^{μ}, n^{μ} and one complex null vector m^{μ},

$$
l \cdot n=-m \cdot \bar{m}=-1 \text { and } g_{\mu \nu}=-l_{(\mu} n_{\nu)}+m_{(\mu} \bar{m}_{\nu)}
$$

- four derivatives

$$
D=I^{\mu} \partial_{\mu}, \quad \Delta=n^{\mu} \partial_{\mu}, \quad \delta=m^{\mu} \partial_{\mu}, \quad \bar{\delta}=\bar{m}^{\mu} \partial_{\mu} .
$$

- twelve spin coefficients
- five Weyl scalars

GRAVITATIONAL WAVES

- Spin coefficicent \& Weyl scalar

$$
\begin{array}{rlc}
\kappa & =-m^{\mu} l^{\nu} \nabla_{\nu} l_{\mu} & \sigma=-m^{\mu} m^{\nu} \nabla_{\nu} l_{\mu} \\
\lambda & =-n^{\mu} \bar{m}^{\nu} \nabla_{\nu} \bar{m}_{\mu} & \nu=-n^{\mu} n^{\nu} \nabla_{\nu} \bar{m}_{\mu} \\
\rho & =-m^{\mu} \bar{m}^{\nu} \nabla_{\nu} l_{\mu} & \mu=-n^{\mu} m^{\nu} \nabla_{\nu} \bar{m}_{\mu} \\
\tau & =-m^{\mu} n^{\nu} \nabla_{\nu} l_{\mu} & \varpi=-n^{\mu} l^{\nu} \nabla_{\nu} \bar{m}_{\mu} \\
\epsilon & =-\frac{1}{2}\left(n^{\mu} l^{\nu} \nabla_{\nu} l_{\mu}+m^{\mu} l^{\nu} \nabla_{\nu} \bar{m}_{\mu}\right) \\
\gamma & =-\frac{1}{2}\left(n^{\mu} n^{\nu} \nabla_{\nu} l_{\mu}+m^{\mu} n^{\nu} \nabla_{\nu} \bar{m}_{\mu}\right) \\
\alpha & =-\frac{1}{2}\left(n^{\mu} \bar{m}^{\nu} \nabla_{\nu} l_{\mu}+m^{\mu} \bar{m}^{\nu} \nabla_{\nu} \bar{m}_{\mu}\right) \\
\beta & =-\frac{1}{2}\left(n^{\mu} m^{\nu} \nabla_{\nu} l_{\mu}+m^{\mu} m^{\nu} \nabla_{\nu} \bar{m}_{\mu}\right)
\end{array}
$$

```
\psi
\psi
\psi < = C <\alpha\beta\mu\nu
\psi 
\psi}4=\mp@subsup{C}{\alpha\beta\mu\nu}{}\mp@subsup{n}{}{\alpha}\mp@subsup{\overline{m}}{}{\beta}\mp@subsup{n}{}{\mu}\mp@subsup{\overline{m}}{}{\nu
```

- $\delta \psi_{-2}=\rho^{-4} \delta \psi_{4}$ encodes complete information of gravitational waves

$$
\delta \psi_{4}(\mathrm{r} \rightarrow \infty)=\frac{1}{2}\left(\ddot{h}_{+}-i \ddot{h}_{x}\right)(r \rightarrow \infty)
$$

GRAVITATIONAL WAVES

- Gravitational perturbations around Kerr BHs

$$
\begin{aligned}
& {[(D-3 \epsilon+\bar{\epsilon}-4 \rho-\bar{\rho})(\Delta-4 \gamma+\mu)-} \\
& \left.\quad(\delta+\bar{\varpi}-\bar{\alpha}-3 \beta-4 \tau)(\bar{\delta}+\varpi-4 \alpha)-3 \psi_{2}\right] \delta \psi_{0}=4 \pi T_{0} \\
& {[(\Delta+3 \gamma-\bar{\gamma}+4 \mu+\bar{\mu})(D+4 \epsilon-\rho)-} \\
& \left.\quad(\bar{\delta}-\bar{\tau}+\bar{\beta}+3 \alpha+4 \varpi)(\delta-\tau+4 \beta)-3 \psi_{2}\right] \delta \psi_{4}=4 \pi T_{4}
\end{aligned}
$$

- source term: stress tensor $T_{l m}=T_{\mu \nu} \mu^{\mu} n^{\nu}$.
$T_{0}=(\delta+\bar{\varpi}-\bar{\alpha}-3 \beta-4 \tau)\left[(D-2 \epsilon-2 \bar{\rho}) T_{l m}-(\delta+\bar{\varpi}-2 \bar{\alpha}-2 \beta) T_{l l}\right]$

$$
+(D-3 \epsilon+\bar{\epsilon}-4 \rho-\bar{\rho})\left[(\delta+2 \bar{\varpi}-2 \beta) T_{l m}-(D-2 \epsilon+2 \bar{\epsilon}-\bar{\rho}) T_{m m}\right]
$$

$$
T_{4}=(\Delta-\bar{\gamma}+\bar{\mu}+3 \gamma+4 \mu)\left[(\bar{\delta}-2 \bar{\tau}+2 \alpha) T_{n \bar{m}}-(\Delta+\bar{\mu}-2 \bar{\gamma}+2 \gamma) T_{\bar{m} \bar{m}}\right]
$$

$$
+(\bar{\delta}+3 \alpha+\bar{\beta}+4 \varpi-\bar{\tau})\left[(\Delta+2 \bar{\mu}+2 \gamma) T_{n \bar{m}}-(\bar{\delta}+2 \alpha+2 \bar{\beta}-\bar{\tau}) T_{n n}\right]
$$

GRAVITATIONAL WAVES

- Teukolsky equation
- 1) far region: source free, outgoing at infinity
- 2) NHEK or near-NHEK region: source stress tensor, ingoing at horizon
- Stress tensor with quadrupole correction

$$
T^{\mu \nu}=\int d \tau\left[\left(p^{(\mu} u^{\nu)}\right) \mathcal{D}+\frac{1}{3} R_{\alpha \beta \gamma}{ }^{(\mu} J^{\nu) \gamma \beta \alpha} \mathcal{D}-\nabla_{\alpha}\left(S^{\alpha(\mu} u^{\nu)} \mathcal{D}\right)-\frac{2}{3} \nabla_{\alpha} \nabla_{\beta}\left(J^{\alpha(\mu \nu) \beta} \mathcal{D}\right)\right]
$$

- For 2^{N}-pole,

$$
T^{\mu \nu}=\sum_{i, j, k \geq 0}^{i+j+k \leq N} T_{i j k}^{\mu \nu} \delta^{(i)}\left(r-r_{0}\right) \delta^{(j)}\left(\theta-\frac{\pi}{2}\right) \delta^{(k)}\left(\phi+\alpha r_{0} t\right)
$$

- Matching at intermediate region

$$
\left.\delta \psi_{4}\right|_{\text {Kerr }}=M^{2} \lambda^{4 / 3} \times\left.\delta \psi_{4}\right|_{\text {NHEK }}
$$

GRAVITATIONAL WAVES

- Circular $\left(l_{*}\right)$

$$
h_{+}-i h_{\times}=\frac{\mu}{\hat{r}} \sum_{l, m} \mathcal{A}_{l m}\left(\frac{\ell}{\ell_{*}}, \chi q ; \lambda, \kappa_{S^{2}}\right) S_{l m}(\theta) e^{i m \hat{\phi}-i \hat{\omega} \hat{u}}
$$

$$
\begin{aligned}
\mathcal{A}_{l m}= & -8 \frac{M^{4}}{a m^{2}} B_{l m}\left(x_{*}\right) \mathcal{K}_{\kappa}^{f a r} \\
B_{l m}\left(x_{*}\right)= & \frac{q}{\mathcal{W}_{\kappa} M^{4} r_{0}}\left\{\frac { \mathcal { R } _ { l m \omega } ^ { \mathrm { in } } (r _ { 0 }) } { (1 + 2 \kappa _ { 0 }) ^ { 2 } } \left[{ }_{-2} t_{4}\left(\frac{V^{2}\left(r_{0}\right)}{\left(1+2 \kappa_{0}\right)^{2}}+\frac{r_{0}^{2} V^{\prime \prime}\left(r_{0}\right)}{1+2 \kappa_{0}}\right)-b_{3} \frac{r_{0} V^{\prime}\left(r_{0}\right)}{1+2 \kappa_{0}}\right.\right. \\
& \left.\left.+b_{0}+b_{2} \frac{V\left(r_{0}\right)}{1+2 \kappa n}\right]+\frac{r_{0} \mathcal{R}_{l m \omega}^{\mathrm{in} /}\left(r_{0}\right)}{\left(1+2 \kappa_{0}\right)^{2}}\left[-b_{1}+2_{-2} t_{4} \frac{r_{0} V^{\prime}\left(r_{0}\right)}{1+2 \kappa_{0}}-\tilde{b}_{3} \frac{V\left(r_{0}\right)}{1+2 \kappa_{0}}\right]\right\} \\
\mathcal{K}_{\kappa}^{f a r} \equiv & \frac{\lambda^{h} \kappa^{-h} k_{1}}{1-\lambda^{2 h-1} k_{2} \frac{\Gamma(h-i n+i m)}{\Gamma(1-h-i n+i m)}} \\
n \equiv & \frac{\omega}{\kappa}+m . \\
k_{1} \equiv & \frac{2^{i m} e^{-i m / 2} \Gamma(2-2 h)}{\Gamma(1-h+i m-s)}(i m)^{h-1+i m-s}\left[1-\frac{(-i m)^{2 h-1}}{(i m)^{2 h-1}} \frac{\sin \pi(h+i m)}{\sin \pi(h-i m)}\right] \\
k_{2} \equiv & (-2 i m)^{2 h-1} \frac{\Gamma(1-2 h)^{2}}{\Gamma(2 h-1)^{2}} \frac{\Gamma(h-i m+s)}{\Gamma(1-h-i m+s)} \frac{\Gamma(h-i m-s)}{\Gamma(1-h-i m-s)}, \\
h= & 1
\end{aligned}
$$

GRAVITATIONAL WAVES

- Circular $\left(l_{*}\right)$

$$
\begin{aligned}
\mathcal{R}_{l m \omega}^{\mathrm{in}}(r)= & r^{-i n / 2-s}\left(\frac{r}{2 \kappa}+1\right)^{i\left(\frac{n}{2}-m\right)-s}{ }_{2} F_{1}\left(h-i m-s, 1-h-i m-s, 1-i n-s,-\frac{r}{2 \kappa}\right) \\
\mathcal{W}_{\kappa} \equiv & -\frac{(2 \kappa)^{1-h-i n / 2} \Gamma(2 h) \Gamma(1-i n-s)}{\Gamma(h+i m-i n) \Gamma(h-i m-s)} \\
b_{0}= & -{ }_{2} t_{0}+4 \frac{1+\kappa_{0}}{1+2 \kappa_{0}}-2 t_{1}+4 \frac{5+10 \kappa_{0}+6 \kappa_{0}^{2}}{\left(1+2 \kappa_{0}\right)^{2}}-2 t_{2}+24 \frac{\left(1+\kappa_{0}\right)\left(5+10 \kappa_{0}+8 \kappa_{0}^{2}\right)}{\left(1+2 \kappa_{0}\right)^{3}}-2 t_{3} \\
& +24 \frac{35+140 \kappa_{0}+252 \kappa_{0}^{2}+224 \kappa_{0}^{3}+80 \kappa_{0}^{4}}{\left(1+2 \kappa_{0}\right)^{4}}{ }_{-2} t_{4}, \\
b_{1}= & -{ }_{2} t_{1}+6 \frac{1+\kappa_{0}}{1+2 \kappa_{0}}-2 t_{2}+2 \frac{19+38 \kappa_{0}+24 \kappa_{0}^{2}}{\left(1+2 \kappa_{0}\right)^{2}}-2 t_{3}+16 \frac{\left(1+\kappa_{0}\right)\left(17+34 \kappa_{0}+30 \kappa_{0}^{2}\right)}{\left(1+2 \kappa_{0}\right)^{3}}-{ }_{2} t_{4}, \\
b_{2}= & -{ }_{2} t_{2}+12 \frac{1+\kappa_{0}}{1+2 \kappa_{0}}-2 t_{3}+2 \frac{61+122 \kappa_{0}+7 \kappa_{0}^{2}}{\left(1+2 \kappa_{0}\right)^{2}}-2 t_{4}, \\
b_{3}= & -{ }_{-2} t_{3}+18 \frac{1+\kappa_{0}}{1+2 \kappa_{0}}-2 t_{4}, \\
\tilde{b}_{3}= & -{ }_{2} t_{3}+16 \frac{1+\kappa_{0}}{1+2 \kappa_{0}}-2 t_{4} .
\end{aligned}
$$

GRAVITATIONAL WAVES

- Radial source term of Teukolsky equation

$$
\begin{aligned}
{ }_{2} T_{l m \tilde{\Omega}}(r) & =-4 M^{2} \int_{0}^{2 \pi} d \phi e^{-i m(\phi-\tilde{\omega} t)} \int_{0}^{\pi} d \theta \sin \theta S_{l m}(\theta)\left(1+\cos ^{2} \theta\right)(1-i \cos \theta)^{4} \mathcal{T}_{4} \\
& =q \sum_{i=0}^{N+2}-{ }_{-2} t_{i} \frac{r_{0}^{i+3}}{M^{4}} \delta^{(i)}\left(r-r_{0}\right)
\end{aligned}
$$

- $-{ }_{-2} t_{i}$ are fixed by circular orbit

GRAVITATIONAL WAVES

- $\mathcal{A}_{l m}$ is incependent of M
- $h_{+}-i h_{x} \propto \frac{\mu}{\hat{f}}$ typical fall off behavior
- For extreme Kerr black holes, the frequency of the emitted GWs is locked by kinematics to be extremal value $\widehat{\omega}_{\text {ext }}=\frac{m}{2 M}$
- For near-extreme Kerr black holes, the frequency is relatively shifted

- Near-NHEK approximation requires

- l can be very close to l_{*} but can never be reachea in near - NHEK.
- Maximal: $l \rightarrow l_{*}$, minimal: $l \rightarrow \infty$
- Vanishes at first order of $\chi q=\frac{S}{\mu M}$
- Vanishes at second order of S for black holes ($\kappa_{S^{2}}=1$) , non-zero for neutron stars

GRAVITATIONAL WAVE

- Amplitude is independent of r_{0}
- The leading contribution is from the modes with $h=\frac{1}{2}-i \delta_{l m}$
- Scaling behavior in the limit $l \rightarrow l_{*}$

- Generalization of the scaling behavior with spin and higher multipole corrections.

```
G.Compere, K.Fransen, T.Hertog, J.Long (2017)
```

- No divergent in the limit $l \rightarrow l_{*}$
- The orbit is completely fixed given energy and orbital angular momentum, using Boyer-Linquist coordinates $\hat{x}=\frac{\hat{r}-\hat{r}_{+}}{\hat{r}_{+}}, \hat{x}_{0}=\frac{\lambda}{\kappa_{0}}$

$$
\lim _{\ell \rightarrow \ell_{*}} \mathcal{A}_{l m}\left(\frac{\ell}{\ell_{*}}, \chi q, \lambda, \kappa_{S^{2}}\right) \sim \hat{x}_{0}^{1 / 2}
$$

GRAVITATIONAL WAVES

- Energy flux (working in progress)
- Since we already obtained the waveform at infinity and horizon, the energy flux can be found to be (NHEK)
- $\dot{E}_{\infty}=q^{2} \hat{x}_{0}\left[a_{\infty}^{(0)}+a_{\infty}^{(1)} \chi q+\left(a_{\infty}^{(2)}+\kappa_{S^{2}} \tilde{a}_{\infty}^{(2)}\right)(\chi q)^{2}+\cdots\right]$
- $\dot{E}_{H}=q^{2} \hat{x}_{0}\left[a_{H}^{(0)}+a_{H}^{(1)} \chi q+\left(a_{H}^{(2)}+\kappa_{S^{2}} \tilde{a}_{H}^{(2)}\right)(\chi q)^{2}+\cdots\right]$
- $a_{\infty}^{(i)}, a_{H}^{(i)}$ are constants which should be evaluated numerically.
- $a_{\infty}^{(0)}=0.987, a_{H}^{(0)}=-0.133$
S. Gralla, S.Hughes \& N.Warburton (2016)
- $a_{\infty}^{(1)}=$?,$a_{H}^{(1)}=$?
- $a_{\infty}^{(2)}=$?,$a_{H}^{(2)}=$?
- $\tilde{a}_{\infty}^{(2)}=$?,$\tilde{a}_{H}^{(2)}=$?

First order correction from spin effect Second order correction from spin effect First order correction from size (quadrupole) effect

- Detectability
- Extremely small λ, rapidly spinning Kerr black hole
- Existence?
- K.S.Thorne bound (1974): J $\$ 0.998 M^{2}$
- X-ray observing campaigns for AGNs
- L.Brenneman, "Measuring Supermassive Black Hole Spins in Active Galactic Nuclei 2013
- Maybe we can assume the existence of high spin Kerr black hole

AGN	a	$\log \mathrm{M}$	$L_{\text {bol }} / L_{\text {Edd }}$	Host
MCG-6-30-15 ${ }^{\text {a }}$	$\geq+0.98$	$6.655_{-0.17}^{+0.17}$	$0.40_{-0.13}^{+0.13}$	E/S0
Fairall 9^{b}	$+0.52_{-0.15}^{+0.19}$	$8.41_{-0.11}^{+0.11}$	$0.05_{-0.01}^{+0.01}$	Sc
SWIFT J2127.4+5654 ${ }^{\text {c }}$	$+0.6_{-0.2}^{+0.2}$	$7.18_{-0.07}^{+0.07}$	$0.18{ }_{-0.03}^{+0.03}$	-
1 H0707-495 ${ }^{\text {d }}$	$\geq+0.98$	$6.70_{-0.40}^{+0.40}$	$\sim 1.0_{-0.6}$	-
Mrk $79{ }^{\text {e }}$	$+0.7_{-0.1}^{+0.1}$	$7.72_{-0.14}^{+0.14}$	$0.05_{-0.01}^{+0.01}$	SBb
Mrk $335{ }^{\text {f }}$	$+0.70_{-0.01}^{+0.12}$	$7.155_{-0.13}^{+0.13}$	$0.25_{-0.07}^{+0.07}$	S0a
NGC 3783^{g}	$\geq+0.98$	$7.47_{-0.08}^{+0.08}$	$0.06_{-0.01}^{+0.01}$	SB(r)ab
Ark 120^{h}	$+0.944_{-0.1}^{+0.1}$	$8.188_{-0.05}^{+0.05}$	$0.04{ }_{-0.01}^{+0.01}$	$\mathrm{Sb} / \mathrm{pec}$
$3 \mathrm{C} 120{ }^{i}$	≥ 0.95	$7.744_{-0.22}^{+0.20}$	$0.31{ }_{-0.19}^{+0.20}$	S0
$1 \mathrm{H} 0419-577^{j}$	$\geq+0.88$	$8.188_{-0.12}^{+0.12}$	$1.27{ }_{-0.42}^{+0.42}$	-
Ark 564^{j}	$+0.96_{-0.06}^{+0.01}$	≤ 6.90	≥ 0.11	SB
Mrk 110^{j}	$\geq+0.99$	$7.40_{-0.09}^{+0.09}$	$0.16_{-0.04}^{+0.04}$	-
SWIFT J0501.9-3239 ${ }^{j}$	$\geq+0.96$	-	-	SB0/a(s) pec
Ton S180 ${ }^{j}$	$+0.91_{-0.09}^{+0.02}$	$7.30_{-0.40}^{+0.60}$	$2.15{ }_{-1.61}^{+3.21}$	-
RBS 1124^{j}	$\geq+0.98$	8.26	0.15	-
Mrk 359^{j}	$+0.66_{-0.54}^{+0.30}$	6.04	0.25	pec
Mrk $841{ }^{j}$	$\geq+0.52$	7.90	0.44	E
IRAS 13224-3809 ${ }^{j}$	$\geq+0.995$	7.00	0.71	-
Mrk $1018{ }^{j}$	$+0.58_{-0.74}^{+0.36}$	8.15	0.01	S0
IRAS 00521-7054 ${ }^{l}$	$\geq+0.84$	-	-	-
NGC 4051 ${ }^{\text {m }}$	$\geq+0.99$	6.28	0.03	SAB(rs)bc
NGC 1365 ${ }^{\text {k }}$	$+0.97{ }_{-0.04}^{+0.01}$	$6.600_{-0.30}^{+1.40}$	$0.06_{-0.04}^{+0.06}$	SB(s)b

DISCUSSION \& CONCLUSION

- Detectability
- Leading order frequency is locked by extreme Kerr black hole
- $f_{H}=\frac{1}{4 \pi M}=1.6 \times 10^{-2}\left(\frac{10^{6} M_{\text {solar }}}{M}\right)$
- SMBH: space-based detectors, LISA
- IMBH: ground-based detectors, Advanced LIGO, VIRGO
- Precise observation?

- Black holes and Neutron stars are different at second order of spin

DISCUSSION \& CONCLUSION

- Detectability
- Extreme mass ratio coalescence, $q \sim 10^{-6}$, spin and size effect are too small
- Intermediate mass ratio coalescence (IMRAC), $q \sim 10^{-2}$, maybe it is more closely related to experiments.
- Two types of IMRACs

1) stellar mass BH falls into IMBH, LIGO
2) IMBH falls into SMBH, LISA

- The method is reliable for IMRACs?
- Existence of IMBH?
- The self force effect should be comparable to spin effect
- Convergence problem for higher multipole?

DISCUSSION \& CONCLUSION

- Future direction
- 1) Self force correction
- 2) Circular orbits out of equatorial plane (spin effect is necessary)
- 3) Plunging orbits from conformal transformation
- 4) MPD equation at the full level by including all higher multipoles for BHs?
- 5) Exact critical orbital angular momentum with all higher multipole corrections?
- 6) Numerical simulation and confirm our results
- 7) …

THANKS FOR YOUR ATTENTION!

TECHNICAL DETAILS

CONFORMAL TRANSFORMATION
NHEK \rightarrow NHEK isomorphism

$$
\begin{align*}
\bar{R} & =\frac{R^{2}\left(1+T^{2}\right)-1+\left(1+R^{2}\left(1-T^{2}\right)\right) \cos \zeta-2 R^{2} T \sin \zeta}{2 R} \\
\bar{T} & =\frac{2 R^{2} T \cos \zeta+\left(1+R^{2}\left(1-T^{2}\right)\right) \sin \zeta}{2 R} \frac{1}{\bar{R}} \tag{10}\\
\bar{\Phi} & =\Phi+\log \frac{\cos \frac{\zeta}{2} R-\sin \frac{\zeta}{2}(1+R T)}{\cos \frac{\zeta}{2} R-\sin \frac{\zeta}{2}(-1+R T)}
\end{align*}
$$

NHEK \rightarrow NHEK discrete transformation

$$
\begin{equation*}
T \rightarrow-T, \Phi \rightarrow-\Phi \tag{11}
\end{equation*}
$$

TECHNICAL DETAILS

CONFORMAL TRANSFORMATION

near-NHEK \rightarrow near-NHEK isomorphism

$$
\begin{aligned}
& r=(\bar{r}+\kappa) \cos \zeta-\sqrt{\bar{r}(\bar{r}+2 \kappa)} \sin \zeta \sinh \kappa \bar{t}-\kappa, \\
& t=\frac{1}{2 \kappa} \log \frac{\sqrt{\bar{r}(\bar{r}+2 \kappa)}(\cosh \kappa \bar{t}+\cos \zeta \sinh \kappa \bar{t})+\sin \zeta(\bar{r}+\kappa)}{\sqrt{\bar{r}(\bar{r}+2 \kappa)}(\cosh \kappa \bar{t}-\cos \zeta \sinh \kappa \bar{t})-\sin \zeta(\bar{r}+\kappa)}, \\
& \phi=\bar{\phi}+\frac{1}{2} \log \frac{r}{r+2 \kappa}+\log \frac{e^{\kappa \bar{\epsilon}} \sqrt{\bar{r}+2 \kappa} \cos \frac{\zeta}{2}+\sqrt{\bar{r}} \sin \frac{\zeta}{2}}{e^{\kappa \bar{t}} \sqrt{\bar{r}} \cos \frac{\zeta}{2}+\sqrt{\bar{r}+2 \kappa} \sin \frac{\zeta}{2}} .
\end{aligned}
$$

near-NHEK \rightarrow near-NHEK discrete transformation

$$
\begin{equation*}
t \rightarrow-t, \phi \rightarrow-\phi \tag{12}
\end{equation*}
$$

TECHNICAL DETAILS

CONFORMAL TRANSFORMATION

NHEK \rightarrow near-NHEK diffeomorphism

$$
\begin{align*}
r & =\kappa(-R T-1) \\
t & =\frac{1}{\kappa} \log \frac{R}{\sqrt{R^{2} T^{2}-1}} \tag{13}\\
\phi & =\Phi+\frac{1}{2} \log \frac{-R T-1}{-R T+1}
\end{align*}
$$

near-NHEK \rightarrow NHEK diffeomorphism

$$
\begin{align*}
R & =\frac{1}{\kappa} e^{\kappa t} \sqrt{r(r+2 \kappa)}, \\
T & =-e^{-\kappa t} \frac{r+\kappa}{\sqrt{r(r+2 \kappa)}}, \tag{14}\\
\Phi & =\phi-\frac{1}{2} \log \frac{r}{r+2 \kappa} .
\end{align*}
$$

TECHNICAL DETAILS

NHEK, NEAR-NHEK \& KERR

Energy and Angular momentum

- \hat{e}, \hat{l} asymptotically flat observer
- E, L NHEK
- e, I near-NHEK
$\hat{l}=L, \hat{e}=\frac{\lambda^{\frac{2}{3}}}{2 M} E-\frac{1}{2 M} L$
$\hat{l}=I, \hat{e}=\frac{\lambda}{2 M \kappa} e-\frac{1}{2 M} I$
$\hat{x} \rightarrow 0$ region should be attached to $R \rightarrow \infty$ or $r \rightarrow \infty$ region
wave function should be matched

$$
\begin{gather*}
\left.\left.\psi(\hat{x} \rightarrow 0)\right|_{\text {Kerr }} \sim \psi(R \rightarrow \infty)\right|_{\text {NHEK }} \tag{8}\\
\left.\left.\psi(\hat{x} \rightarrow 0)\right|_{\text {Kerr }} \sim \psi(r \rightarrow \infty)\right|_{\text {near-NHEK }} \tag{9}
\end{gather*}
$$

TECHNICAL DETAILS

TEUKOLSKY EQUATION

- Angular part

$$
\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} S_{l m}}{\mathrm{~d} \theta}\right)+\left[\frac{m^{2}}{4} \cos ^{2} \theta-m s \cos \theta-\left(\frac{m^{2}+2 m s \cos \theta+s^{2}}{\sin ^{2} \theta}\right)+\mathcal{E}_{l m}\right] S_{l m}=0
$$

- Radial part

$$
\begin{aligned}
& (r(r+2 \kappa))^{-s} \frac{\mathrm{~d}}{\mathrm{~d} r}\left((r(r+2 \kappa))^{s+1} \frac{\mathrm{~d} R_{l m \omega}}{\mathrm{~d} r}\right)-V(r) R_{l m \omega}(r)=T_{l m \omega}(r) \\
& V(r)=-\frac{3}{4} m^{2}-s(s+1)+\mathcal{E}_{l m}-2 i s m+\frac{(m r+\kappa n)(\kappa(2 s i-n)+r(2 s i-m))}{r(r+2 \kappa)}
\end{aligned}
$$

TECHNICAL DETAILS

TEUKOLSKY EQUATION

- Radial equation with Delta function

$$
\begin{gathered}
A(r)\left(B(r) R(r)^{\prime}\right)^{\prime}-V(r) R(r)=T(r) \\
T(r)=\sum_{i=0}^{N+2} a_{i} \delta^{(i)}\left(r-r_{0}\right)
\end{gathered}
$$

- Assume $R_{1,2}(r)$ are two independent solutions of homogeneous equation

$$
R(r)=X_{1} R_{1}(r) \Theta\left(r_{0}-r\right)+X_{2} R_{2}(r) \Theta\left(r-r_{0}\right)+Y_{1} R_{1}(r)+Y_{2} R_{2}(r)+\sum_{i=0}^{n} \beta_{i} \delta^{(i)}\left(r-r_{0}\right)
$$

- Define Wronskian

$$
W=B\left(R_{1} R_{2}^{\prime}-R_{2} R_{1}^{\prime}\right)
$$

$$
\begin{align*}
X_{1}= & \frac{-1}{A^{5} B^{3} W}\left[a_{0}\left(-A^{4} B^{3} R_{2}\right)+a_{1} A^{3} B^{3}\left(A R_{2}^{\prime}-A^{\prime} R_{2}\right)+a_{2} A^{2} B^{2}\left(R _ { 2 } \left(-A V-2 B A^{\prime 2}\right.\right.\right. \\
& \left.\left.+A B A^{\prime \prime}\right)+R_{2}^{\prime}\left(2 A B A^{\prime}+A^{2} B^{\prime}\right)\right)+a_{3} A B\left(R _ { 2 } \left(-4 A B V A^{\prime}-6 A^{\prime 3} B^{2}-2 A^{2} B^{\prime} V\right.\right. \\
& \left.+A^{2} B V^{\prime}+6 A A^{\prime} A^{\prime \prime} B^{2}-A^{2} B^{2} A^{(3)}\right)+R_{2}^{\prime}\left(A^{2} B V+6 A B^{2} A^{\prime 2}+3 A^{2} B A^{\prime} B^{\prime}+2 A^{3} B^{\prime 2}\right. \\
& \left.\left.-3 A^{2} B^{2} A^{\prime \prime}-A^{3} B B^{\prime \prime}\right)\right)+a_{4}\left(R _ { 2 } \left(-A^{2} B V^{2}-18 A B^{2} A^{\prime 2} V-24 A^{\prime 4} B^{3}-11 A^{2} B A^{\prime} B^{\prime} V\right.\right. \\
& -6 A^{3} B^{\prime 2} V+6 A^{2} B^{2} A^{\prime} V^{\prime}+3 A^{3} B B^{\prime} V^{\prime}+7 A^{2} B^{2} A^{\prime \prime} V+36 A B^{3} A^{\prime 2} A^{\prime \prime}-6 A^{2} B^{3} A^{\prime 2} \\
& \left.+3 A^{3} B B^{\prime \prime} V-A^{3} B^{2} V^{\prime \prime}-8 A^{2} B^{3} A^{\prime} A^{(3)}+A^{3} B^{3} A^{(4)}\right)+R_{2}^{\prime}\left(6 A^{2} B^{2} A^{\prime} V+24 A B^{3} A^{\prime 3}\right. \\
& +4 A^{3} B B^{\prime} V+12 A^{2} B^{2} A^{\prime 2} B^{\prime}+8 A^{3} B A^{\prime} B^{\prime 2}+6 A^{4} B^{\prime 3}-2 A^{3} B^{2} V^{\prime}-24 A^{2} B^{3} A^{\prime} A^{\prime \prime} \\
& \left.\left.\left.-6 A^{3} B^{2} B^{\prime} A^{\prime \prime}-4 A^{3} B^{2} A^{\prime} B^{\prime \prime}-6 A^{4} B B^{\prime} B^{\prime \prime}+4 A^{3} B^{3} A^{(3)}+A^{4} B^{2} B^{(3)}\right)\right)\right], \tag{B.4}
\end{align*}
$$

$X_{2}=X_{1}\left(R_{2} \leftrightarrow R_{1}\right.$, keeping W unflipped $)$,

$$
\begin{align*}
\beta_{0}= & \frac{1}{A^{3} B^{3}}\left(a_{2} A^{2} B^{2}+a_{3} A B\left(2 A B^{\prime}+3 A^{\prime} B\right)+a_{4}\left(A B V+A B\left(8 A^{\prime} B^{\prime}-6 A^{\prime \prime} B\right)\right.\right. \\
& \left.\left.\left.+6 A^{2} B^{\prime 2}-3 A^{2} B B^{\prime \prime}+12 A^{\prime 2} B^{2}\right)\right)\right), \tag{B.6}
\end{align*}
$$

$\beta_{1}=\frac{1}{A^{2} B^{2}}\left(a_{3} A B+\left(3 A B^{\prime}+4 A^{\prime} B\right) a_{4}\right)$,
$\beta_{2}=\frac{a_{4}}{A B}$.

