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INTRODUCTION & MOTIVATION

• GR has passed varies tests, including deflection of light, precession of Mercury…

• Recently, gravitational waves, one of its prediction, has been detected by LIGO.

• Binary black hole (BBH) systems are perfect laboratory to test GR.

1)Newton gravity: 

i) two-body problem,  exactly solvable

ii) three-body problem? 

2)Einstein gravity: 

i) one-body problem,  Schwarzchild, Kerr

ii) two-body problem, not easy to find an analytic solution

3)Gravitational waves are radiated from BBHs.



INTRODUCTION & MOTIVATION

• Discovery from LIGO…



INTRODUCTION & MOTIVATION

• Two facts 

1) the mass ratio of two BHs (NS): 
𝑀1

𝑀2
≈ 1

2) The mass of the BH in this picture:  M~10𝑀𝑠𝑜𝑙𝑎𝑟, stellar black holes

• BHs:

1) Stellar black hole: gravitational collapse of a star , 1~102𝑀𝑠𝑜𝑙𝑎𝑟

2) Intermediate mass black hole (IMBH): no strong evidence, 102~105𝑀𝑠𝑜𝑙𝑎𝑟

3) Supermassive black hole (SMBH): center of galaxies, 105~109𝑀𝑠𝑜𝑙𝑎𝑟



INTRODUCTION & MOTIVATION

• The parameter space of BBH:  𝑚, 𝑆,𝑀, 𝐽, 𝑙𝑜𝑟𝑏 , …

• LIGO just tests the region: 
𝑚

𝑀
≈ 1, 𝑀 ≈ 10𝑀𝑠𝑜𝑙𝑎𝑟

• Intermediate and extreme mass ratio: q ≡
𝑚

𝑀
≪ 1

• The small BH 𝑚 ≈ 𝑀𝑠𝑜𝑙𝑎𝑟

• Intermediate mass ratio 𝑞 ≈ (10−2~10−5)

• Extreme mass ratio         𝑞 ≈ (10−6~10−9)

• We will discuss the perturbation theory to compute gravitational wave in the 
region 𝑞 ≪ 1



ASSUMPTIONS

• Large BH 

1) Near-extreme Kerr black hole (High spin Kerr black hole)

2) Near horizon region: emergence of conformal symmetry

the last stage of black hole merger

• λ = 1 −
𝐽2

𝑀4 ≪ 1

J.Bardeen &G.Horowitz (1999)

M.Guica, T.Hartman, W.Song &A.Strominger (2009)



ASSUMPTIONS

• Coalescence of a binary black hole

• Three steps(phases): 

1) Inspiral

2) Merger

3) Ringdown

• Large high spin Kerr black hole as a background

• Three patches of Kerr black hole

1) far region

2) NHEK region

3) near-NHEK region



KERR BLACK HOLE

• Three patches of a high spin 

Kerr black hole

Last stage of a small black hole

Falls into a large high spin Kerr black hole 

is in NHEK and near-NHEK region

• J.Bardeen, W.Press, S.Teukolsky (1972)



FAR REGION

• Far region

• ො𝑥 ≪ 1, 𝑛𝑒𝑎𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

• ො𝑥 → ∞, observer



NHEK REGION

• NHEK region

• It can be obtained by coordinate transformation

and take the limit    λ → 0



NEAR-NHEK REGION

• Near-NHEK region

It can be obtained by coordinate transformation

and take the limit    λ → 0

𝑟 → 0, ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑟 → ∞, 𝑎𝑡𝑡𝑎𝑐ℎ 𝑡𝑜 𝑓𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛



ASSUMPTIONS

• Small black hole

• 1) mass m (𝑝𝜇)

• 2) spin S     (𝑆𝜌𝜎)

• 3) black hole is not a point particle, it has a size! 

• 4) As a first step, we ignore any backreaction from gravitational waves

• How to describe the movement of an extended object in curved 
spacetime?

• Generalization of geodesics 



MATHISSON-PAPAPETROU-DIXON FORMALISM

• Geodesics of a point particle without spin       𝑢𝜇𝛻𝜇𝑢
𝜌 = 0

• A particle with momentum p and spin S (MP equation) 

• 𝑝𝜇 ≡ 𝑇𝜇𝜌׬ 𝑑Σ𝜌,  𝑆𝛼𝛽 ≡ ׬ 𝑥𝛼 − 𝑧𝛼 𝑇𝛽𝛾𝑑Σγ − (𝛼 ↔ 𝛽)

• Conservation of stress tensor

• Spin Supplementary Condition (SSC)    



MATHISSON-PAPAPETROU-DIXON FORMALISM

• Evolution equations of an extended body

• Force and torque: presence of higher multipoles

• 2𝑁 − 𝑝𝑜𝑙𝑒: described by a tensor with N+2 indices

• 𝐽𝜇1𝜇𝑁𝛼𝛽𝛾𝛿 with symmetry structure

• 𝑔𝛼𝛽,𝜇1⋯𝜇𝑁: a extension of metric in the sense

of Veblen and Thomas



MATHISSON-PAPAPETROU-DIXON FORMALISM

• Mass:

1)  𝑚2 = −𝑝2

2)  𝑚 = −𝑝 ∙ 𝑢

• In general,    𝑚 ≠ 𝑚

• Spin:

𝑆𝜇 =
1

2𝑚
𝜖𝜇𝛼𝛽𝛾𝑝

𝛼𝑆𝛽𝛾

• Spin length:

𝑆2 =
1

2
𝑆𝛼𝛽𝑆

𝛼𝛽 = 𝑆𝜇𝑆𝜇

• 𝑚,𝑚, 𝑆 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 ℎ𝑖𝑔ℎ𝑒𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑜𝑙𝑒𝑠



MATHISSON-PAPAPETROU-DIXON FORMALISM

• Conserved quantities:  Given a Killing vector  ξα

𝑄ξ = ξα𝑝
α +

1

2
𝑆αβ𝛻𝛼ξ𝛽 is conserved even in the presence of multipoles

• Stress tensor: MPD equations are equivalent to   𝛻𝜇𝑇
𝜇𝜌 = 0

• Up to quadrupole, 

• The stress tensor is 



QUADRUPOLE MODEL

• To solve MPD equations, one should construct explicit higher multipole model

• Some effects that could contribute to quadrupole

1) spin-induced quadrupole

2)gravito-electric tidal field induced quadrupole   

3)gravito-magnetic tidal field induced quadrupole

• The quadrupole is a linear combination of these terms   

• J.Steinhoff & D.Puetzfeld (2012)  



QUADRUPOLE MODEL
• Dimensional analysis

• κ𝑆2 = 1 for black hole,   κ𝑆2 ≈ 5 for neutron stars   

W.Laarakkers &E.Poisson (1999)

• 𝑚,𝑚 𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑, 𝑡ℎ𝑜𝑢𝑔ℎ 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑢𝑝 𝑡𝑜 𝑂(𝑆3)

• 𝜇 is conserved up to 𝑂(𝑆3), it is the mass term in perturbation theory



CIRCULAR ORBIT
• Solve MPD equations in near-NHEK region to find the trajectory of the small BH

• Spinless case:

Equatorial plane

• Spin and size effect: small mass ratio expansion

• In small q expansion, one can prove  

𝑝𝜇 = 𝑂 𝑞1 , 𝑆𝛼𝛽 = 𝑂 𝑞2 , 𝜇2 = 𝑂 𝑞5 , 𝜎2 = 𝑂(𝑞5)

• Gravito-electric and magnetic tidal deformations are higher order 



CIRCULAR ORBIT
• Assumptions: 



CIRCULAR ORBIT
• Solution

NHEK: κ0 → 0



CIRCULAR ORBIT

• 𝑙∗ is the orbital angular momentum of NHEK circular orbit, critical angular momentum in near-NHEK



GENERAL EQUATORIAL ORBITS

• Conformal transformation: 𝑆𝐿(2, 𝑅) × 𝑈(1) × 𝑃𝑇

1) preserve NHEK

2) preserve near-NHEK

3) NHEK↔near-NHEK

• Near-NHEK: Circular(𝑙∗)

NHEK:  𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟∗

• Spinless case: all plunging or osculating equatorial orbits 

entering into near-NHEK or NHEK are conformally related to

a circular orbit.

G.Compere, K.Fransen, T.Hertog, J.Long (2017)

• MPD equations are covariant.  We expect any equatorial orbit can

be obtained by applying conformal maps.



GRAVITATIONAL WAVES

• Teukolsky equation, Linearized perturbation equation of Kerr black hole
𝐺μν = 8𝜋𝐺𝑁𝑇μν



GRAVITATIONAL WAVES
• Spin coefficicent & Weyl scalar

• δψ−2 = 𝜌−4δψ4 encodes complete information of gravitational waves 

δψ4(r → ∞)=
1

2
( ሷℎ+ − 𝑖 ሷℎ×)(𝑟 → ∞)



GRAVITATIONAL WAVES



GRAVITATIONAL WAVES

• Teukolsky equation

• 1) far region: source free, outgoing at infinity

• 2) NHEK or near-NHEK region: source stress tensor, ingoing at horizon

• Stress tensor with quadrupole correction

• For 2𝑁-pole, 

• Matching at intermediate region 



GRAVITATIONAL WAVES
• Circular(𝑙∗)



GRAVITATIONAL WAVES
• Circular(𝑙∗)



GRAVITATIONAL WAVES

• Radial source term of Teukolsky equation

• are fixed by circular orbit



GRAVITATIONAL WAVES
• is independent of M

• ℎ+ − 𝑖ℎ× ∝
𝜇

Ƹ𝑟
typical fall off behavior

• For extreme Kerr black holes, the frequency of the emitted GWs is locked by 
kinematics to be extremal value    ෝ𝜔𝑒𝑥𝑡 =

𝑚

2𝑀

• For near-extreme Kerr black holes, the frequency is relatively shifted

• Near-NHEK approximation requires

• 𝑙 𝑐𝑎𝑛 𝑏𝑒 𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑙∗ 𝑏𝑢𝑡 𝑐𝑎𝑛 𝑛𝑒𝑣𝑒𝑟 𝑏𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑖𝑛 𝑛𝑒𝑎𝑟 − 𝑁𝐻𝐸𝐾.

• Maximal: 𝑙 → 𝑙∗, minimal: 𝑙 → ∞

• Vanishes at first order of χ𝑞 =
𝑆

𝜇𝑀

• Vanishes at second order of  S for black holes ( κ𝑆2 = 1) , non-zero for neutron stars



GRAVITATIONAL WAVES
• Amplitude is independent of  𝑟0

• The leading contribution is from the modes with ℎ =
1

2
− 𝑖𝛿𝑙𝑚

• Scaling behavior  in the limit 𝑙 → 𝑙∗

• Generalization of the scaling behavior with spin and higher multipole 
corrections.

G.Compere, K.Fransen, T.Hertog, J.Long (2017)

• No divergent in the limit 𝑙 → 𝑙∗

• The orbit is completely fixed given energy and orbital angular momentum, using 

Boyer-Linquist coordinates ො𝑥 =
Ƹ𝑟− Ƹ𝑟+

Ƹ𝑟+
, ො𝑥0 =

λ

κ0



GRAVITATIONAL WAVES
• Energy flux (working in progress)

• Since we already obtained the waveform at infinity and horizon, the energy flux can 
be found to be (NHEK)

• ሶ𝐸∞ = 𝑞2 ො𝑥0[𝑎∞
0
+ 𝑎∞

1
χ𝑞 + 𝑎∞

2
+ κ𝑆2 ෤𝑎∞

2
(χ𝑞)2+⋯]

• ሶ𝐸𝐻 = 𝑞2 ො𝑥0[𝑎𝐻
0
+ 𝑎𝐻

1
χ𝑞 + 𝑎𝐻

2
+ κ𝑆2 ෤𝑎𝐻

2
(χ𝑞)2+⋯]

• 𝑎∞
(𝑖)
, 𝑎𝐻

(𝑖)
are constants which should be evaluated numerically. 

• 𝑎∞
(0)

= 0.987, 𝑎𝐻
(0)

= −0.133 S.Gralla, S.Hughes & N.Warburton (2016)

• 𝑎∞
(1)

=? , 𝑎𝐻
(1)

=? First order correction from spin effect

• 𝑎∞
(2)

=? , 𝑎𝐻
(2)

=? Second order correction from spin effect 

• ෤𝑎∞
(2)

=? , ෤𝑎𝐻
(2)

=? First order correction from size (quadrupole) effect



DISCUSSION & CONCLUSION
• Detectability

• Extremely small 𝜆, rapidly spinning Kerr black hole

• Existence? 

• K.S.Thorne bound (1974):  𝐽 ≲ 0.998𝑀2

• X-ray observing campaigns for AGNs

• L.Brenneman, “Measuring Supermassive 

Black Hole Spins in Active Galactic Nuclei”

2013

• Maybe we can assume the existence of 

high spin Kerr black hole



DISCUSSION & CONCLUSION

• Detectability

• Leading order frequency is locked by extreme Kerr black hole 

• 𝑓𝐻 =
1

4𝜋𝑀
= 1.6 × 10−2(

106𝑀𝑠𝑜𝑙𝑎𝑟

𝑀
)

• SMBH: space-based detectors, LISA

• IMBH: ground-based detectors, Advanced LIGO, VIRGO

• Precise observation? 

• Black holes and Neutron stars are different at second order of spin



DISCUSSION & CONCLUSION
• Detectability

• Extreme mass ratio coalescence, 𝑞~10−6, spin and size effect are too small

• Intermediate mass ratio coalescence (IMRAC), 𝑞~10−2, maybe it is more 
closely related to experiments.

• Two types of IMRACs

1) stellar mass BH falls into IMBH,  LIGO

2) IMBH falls into SMBH, LISA

• The method is reliable for IMRACs?

• Existence of IMBH? 

• The self force effect should be comparable to spin effect

• Convergence problem for higher multipole?



DISCUSSION & CONCLUSION

• Future direction

• 1) Self force correction

• 2) Circular orbits out of equatorial plane (spin effect is necessary)

• 3) Plunging orbits from conformal transformation

• 4) MPD equation at the full level by including all higher multipoles for BHs?

• 5) Exact critical orbital angular momentum with all higher multipole 
corrections?

• 6) Numerical simulation and confirm our results

• 7) ⋯



THANKS FOR YOUR ATTENTION!



TECHNICAL DETAILS
CONFORMAL TRANSFORMATION
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TECHNICAL DETAILS
CONFORMAL TRANSFORMATION



TECHNICAL DETAILS
NHEK, NEAR-NHEK & KERR



TECHNICAL DETAILS
TEUKOLSKY EQUATION

• Angular part

• Radial part



TECHNICAL DETAILS
TEUKOLSKY EQUATION

• Radial equation with Delta function

• Assume 𝑅1,2(𝑟) are two independent solutions of homogeneous equation

• Define Wronskian




