Covariant Phase Space with Boundaries

Jie-qiang Wu (MIT)

Based on work in progress with Daniel Harlow

Tsinghua Sanya International Mathematics Forum

Jan 8th, 2019

- In general relativity, covariant phase space method was developed by Iyer, Lee, Wald, and Zoupas to study Hamiltonian and black hole first law without breaking covariance
- In this work, we study the covariant phase space with more careful treatment of the boundary terms
- With this formalism, we give an explicit algorithm to calculate the Hamiltonian (without dealing with the *B* term $\delta \int_{\partial} \xi \cdot B = \int_{\partial} \xi \cdot \Theta(\phi, \delta \phi)$)
- To understand the covariant phase space method, we study the phase space and the symplectic form for JT gravity
- With this symplectic form, we give an explanation for the traversable wormhole
- In this work, we only focus on classical mechanics

Outline

Classical mechanics

- In classical mechanics, the Hamiltonian formalism is defined by phase space, Hamiltonian, and the Possion bracket or Dirac bracket (symplectic form)
- The phase space and symplectic form include everything in classical mechanics
- In statistical mechanics, the microscopic state is the volume of the phase space
- In quantum mechanics, the classical phase space is the first step of canonical quantization

Hamiltonian vs general relativity

- Hamiltonian formalism is not convenient to describe general relativity
- Hamiltonian formalism: a special coordinate and time direction
- General relativity: diffeomorphism symmetry
- Covariant phase space method

Lee, Wald J.Math.Phys31 725(1990)

lyer, Wald gr-qc/9403028 gr-qc/9503052 Wald Zoupas gr-qc/9911095 Phase space: (up to gauge equivalence,) every solution for the equation of motion corresponds to one point in the phase space

Symplectic form: derived from the action

Simple example: point particle

- Point particle $S = \int_{t_i}^{t_f} dt \frac{1}{2} \dot{x}^2$
- Taking a variation $\delta S = \int_{t_i}^{t_f} dt (-\ddot{x}) \delta x(t) + \dot{x} \delta x \mid_f - \dot{x} \delta x \mid_i$
- The pre-symplectic potential is defined as the initial (or final) surface term under variation of the action; 1-form in configuration space

The pre-symplectic form is the derivative of symplectic potential in configuration space; 2-form in configuration space

- Symplectic potential: $\theta[x, \delta x] = \dot{x}(t)\delta x(t) = p\delta x$ Symplectic form $\omega[x, \delta_1 x, \delta_2 x] = \delta_1 \theta[x, \delta_2 x] - \delta_2 \theta[x, \delta_1 x] = \delta_1 p\delta_2 x - \delta_2 p\delta_1 x$ Hamiltonian $H = \theta[x, \dot{x}] - L = \frac{1}{2}p^2$
- Hamiltonian equation $\delta H = \omega[x, \delta x, \delta_2 x = \dot{x}]$ or $(\delta H)_A = \omega_{AB}\xi^B$, where ξ is a flow in phase space

• For more complicated theories in higher dimension even with gauge symmetry, the prescription still works

• Action:
$$S = \int L^{(n)} + \int_{\gamma} l^{(n-1)}$$

Diffeomorphism symmetry:
 $\delta \phi = \mathcal{L}_{\xi} \phi, \ \delta L^{(n)} = \mathcal{L}_{\xi} L^{(n)} \ \delta l^{(n-1)} = \mathcal{L}_{\xi} l^{(n-1)}$
 ξ is parallel to the boundary
 ϕ denote all of the fields including the matter fields and metric

• Taking a variation for the action

$$\delta L^{(n)} = E^{(n)}(\phi)\delta\phi + d\Theta^{(n-1)}(\phi,\delta\phi) -\Theta^{(n-1)}(\phi,\delta\phi) + \delta I^{(n-1)} = F^{(n-1)}(\phi)\delta\phi + dC^{(n-2)}(\phi,\delta\phi)$$

$$\delta S = \int E^{(n)}(\phi) \delta \phi + \int_{\partial} F^{(n-1)}(\phi) \delta \phi$$

+ $(\int_{\Sigma^{(n-1)}, f} \Theta^{(n-1)}(\phi, \delta \phi) + \int_{\partial \Sigma^{(n-2)}, f} C^{(n-2)}(\phi, \delta \phi))$
- $(\int_{\Sigma^{(n-1)}, i} \Theta^{(n-1)}(\phi, \delta \phi) + \int_{\partial \Sigma^{(n-2)}, i} C^{(n-2)}(\phi, \delta \phi))$

• Pre-symplectic potential $$\begin{split} \Theta_{\text{tot}}[\phi, \delta\phi] &= \int_{\Sigma^{(n-1)}} \Theta^{(n-1)}(\phi, \delta\phi) + \int_{\partial\Sigma^{(n-2)}} \mathbf{C}^{(\mathbf{n}-2)}(\phi, \delta\phi) \\ \text{Pre-symplectic form} \\ \Omega_{\text{tot}} &= \delta_1 \Theta_{\text{tot}}(\phi, \delta_2 \phi) - \delta_2 \Theta_{\text{tot}}(\phi, \delta_1 \phi) \\ &= \int_{\Sigma^{(n-1)}} \omega^{(n-1)}(\phi, \delta_1 \phi, \delta_2 \phi) \\ &+ \int_{\partial\Sigma^{(n-2)}} (\delta_1 \mathbf{C}^{(\mathbf{n}-2)}(\phi, \delta_2 \phi) - \delta_2 \mathbf{C}^{(\mathbf{n}-2)}(\phi, \delta_1 \phi)) \end{split}$$

• Compared with Wald, we have an extra boundary term related to $C^{(n-2)}$

lyer, Wald gr-qc/9403028 gr-qc/9503052

- In Einstein-Hilbert action $C\sim\delta g_{ab}n^a au^b$
- In Einstein-Hilbert action, JT gravity, f(R) gravity, Lovelock gravity, the C term vanish if we choose the gauge that the foliation is orthogonal to the boundary
- Non-zero C term: $S = \int \nabla_a R_{bc} \nabla^a R^{bc}$
- It is convenient to keep the gauge redundancy and non-zero C term in calculation

Hamiltonian

- Noether current: $j_{\xi}^{(n-1)} = \Theta^{(n-1)}[\phi, \mathcal{L}_{\xi}\phi] \xi \cdot L^{(n)}$
- Noether charge: $dj_{\xi}^{(n-1)} = 0$ $j_{\xi}^{(n-1)} = dQ_{\xi}^{(n-2)}$ (under on-shell condition)
- Relation with symplectic form current: $\delta j_{\xi}^{(n-1)} = \omega^{(n-1)}(\phi, \delta\phi, \mathcal{L}_{\xi}\phi) + d(\xi \cdot \Theta^{(n-1)})$ $\int_{\Sigma} \omega(\phi, \delta\phi, \mathcal{L}_{\xi}\phi) = \int_{\partial\Sigma} (\delta Q_{\xi} - \xi \cdot \Theta(\phi, \delta\phi))$
- Boundary action variation $-\Theta^{(n-1)}(\phi,\delta\phi) + \delta I^{(n-1)} = F^{(n-1)}(\phi)\delta\phi + dC^{(n-2)}(\phi,\delta\phi)$
- Hamiltonian $\int_{\Sigma} \omega^{(n-1)}(\phi, \delta\phi, \mathcal{L}_{\xi}\phi) + \int_{\partial\Sigma} \delta C^{(n-2)}(\phi, \mathcal{L}_{\xi}\phi) - \mathcal{L}_{\xi} C^{(n-2)}(\phi, \delta\phi)$ $= \int_{\partial\Sigma} \delta (Q_{\xi}^{(n-2)} + C^{(n-2)}(\phi, \mathcal{L}_{\xi}\phi) - \xi \cdot I^{(n-1)})$
- Hamiltonian equation $\Omega_{tot}[\phi, \delta\phi, \mathcal{L}_{\xi}\phi] = \delta H_{\xi}$ $H_{\xi} = \int_{\partial \Sigma} (Q_{\xi} + C^{(n-2)}(\phi, \mathcal{L}_{\xi}\phi) - \xi \cdot I^{(n-1)})$

• Hamiltonian
$$(Q^{(n-2)} = dj^{(n-1)})$$

 $H_{\xi} = \int_{\partial \Sigma} (Q_{\xi} + C^{(n-2)}(\phi, \mathcal{L}_{\xi}\phi) - \xi \cdot I^{(n-1)})$
 $= \int_{\Sigma} \Theta^{(n-1)}(\phi, \delta\phi, \mathcal{L}_{\xi}\phi) + \int_{\partial \Sigma} C^{(n-2)}(\phi, \delta\phi, \mathcal{L}_{\xi}\phi)$
 $- \int_{\Sigma} \xi \cdot L^{(n)}(\phi) - \int_{\partial \Sigma} \xi \cdot I^{(n-1)}(\phi)$

• Classical mechanics: $H = p\dot{q} - L$

Hawking, Horowitz gr-qc/9501014

• Ambiguity I:

$$S = \int L^{(n)} + \int_{\Gamma} l^{(n-1)} \Rightarrow L \rightarrow L + dX \quad l \rightarrow l + X$$
Ambiguity II:

$$\delta L^{(n)} = E^{(n)}(\phi)\delta\phi + d\Theta^{(n-1)}(\phi,\delta\phi)$$

$$-\Theta^{(n-1)}(\phi,\delta\phi) + \delta l^{(n-1)} = F^{(n-1)}(\phi)\delta\phi + dC^{(n-2)}(\phi,\delta\phi)$$

$$\Rightarrow \Theta \rightarrow \Theta + dY \quad C \rightarrow C - Y$$

The Hamiltonian have no ambiguities

Relation with Brown York tensor

- In Einstein-Hilbert action, JT gravity, H_{ξ} in our algorithm matches with the Brown York tensor's calculation
- A general proof:

• Taking a variation
$$\delta \phi = \mathcal{L}_{\xi} \phi$$
 $\xi \mid_{\partial} \neq 0$
 $\delta S = \Theta_{\text{tot},f}[\phi, \mathcal{L}_{\xi} \phi] - \Theta_{\text{tot},i}[\phi, \mathcal{L}_{\xi} \phi] + \int_{\gamma} \sqrt{-\gamma} \nabla_{a} \xi_{b} T^{ab}$
 $= (\Theta_{\text{tot},f}[\phi, \mathcal{L}_{\xi} \phi] - \int_{\partial \Sigma_{f}} dx^{n-2} \sqrt{h} \lambda_{a} \xi_{b} T^{ab})$
 $- (\Theta_{\text{tot},i}[\phi, \mathcal{L}_{\xi} \phi] - \int_{\partial \Sigma_{i}} dx^{n-2} \sqrt{h} \lambda_{a} \xi_{b} T^{ab})$

- Diffeomorphism symmetry $\delta L = \mathcal{L}_{\xi}L$ $\delta I = \mathcal{L}_{\xi}I$ $\delta S = \int \mathcal{L}_{\xi}L^{(n)} + \int_{\gamma}\mathcal{L}_{\xi}I^{(n-1)}$ $= (\int_{\Sigma_{f}}\xi \cdot L^{(n)} + \int_{\partial\Sigma_{f}}\xi \cdot I^{(n-1)}) - (\int_{\Sigma_{i}}\xi \cdot L^{(n)} + \int_{\partial\Sigma_{i}}\xi \cdot I^{(n-1)})$
- Compare the two equations

$$\begin{aligned} H_{\xi} &= \Theta_{\mathsf{tot}}[\phi, \mathcal{L}_{\xi}\phi] - \left(\int_{\Sigma} \xi \cdot L + \int_{\partial \Sigma} \xi \cdot I\right) \\ &= \int_{\partial \Sigma_{f}} dx^{n-2} \sqrt{h} \lambda_{a} \xi_{b} T^{ab} \end{aligned}$$

Black hole first law

- The *C* term don't change black hole first law $\delta H_{\xi} = \int_{\Sigma} \omega(\phi, \delta\phi, \mathcal{L}_{\xi}\phi) + \int_{\partial\Sigma} (\delta C(\phi, \mathcal{L}_{\xi}\phi) - \mathcal{L}_{\xi}C(\phi, \delta\phi))$ $= \int_{\partial\Sigma} (\delta Q_{\xi} - \xi \cdot \Theta(\phi, \delta\phi)) + \int_{\partial\Sigma} (\delta C(\phi, \mathcal{L}_{\xi}\phi) - \mathcal{L}_{\xi}C(\phi, \delta\phi))$
- Under stationary black hole background $\mathcal{L}_\xi \phi = 0$, the C related term vanish

$$\int_{\partial \Sigma} (\delta C(\phi, \mathcal{L}_{\xi} \phi) - \mathcal{L}_{\xi} C(\phi, \delta \phi)) = 0$$

The first law goes back to Wald's derivation

lyer, Wald gr-qc/9403028

Gauge invariance

• When
$$\xi \mid_{\partial} = 0$$
 , $H_{\xi} = 0$

- H_{ξ} only depend on $\xi \mid_{\partial}$ so is gauge invariant $H_{\xi} = \int_{\partial \Sigma} (Q_{\xi} + C^{(n-2)}(\phi, \mathcal{L}_{\xi}\phi) - \xi \cdot l^{(n-1)})$
- Criteria of gauge invariance of Θ_{tot} and Ω_{tot} : $\Theta_{tot}[\phi, \mathcal{L}_{\xi}\phi] = 0$ $\Omega_{tot}[\phi, \delta\phi, \mathcal{L}_{\xi}\phi] = 0$ $(\xi \mid_{\partial} = 0)$

•
$$\Omega_{tot}[\phi, \delta\phi, \mathcal{L}_{\xi}\phi] = \delta H_{\xi} = 0$$

 Ω_{tot} is gauge invariant

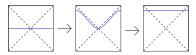
Θ_{tot}[φ, L_ξφ] − ∫ ξ · L − ∫ ξ · I = H_ξ = 0
 Θ_{tot} is gauge invariant if and only if the bulk Lagrangian density vanish under on-shell condition

Symplectic form

• To have a better understanding for covariant phase space, we explicitly build the phase space and calculate the symplectic form in JT gravity

Pure JT gravity

- JT gravity $S = \int dx dt \sqrt{-g} \Phi(R+2) + \int dt \sqrt{-\gamma} \Phi(K-1)$ Almheiri, Polchinski 1402.6334 Maldacena, Stanford, Yang 1606.01857
- The bulk Lagrangian density vanish under on-shell condition, so the symplectic potential is gauge invariant
- Solutions: $\Phi = c \frac{1-uv}{1+uv}$ $ds^2 = -\frac{dudv}{(1+uv)^2}$ Boundary condition: $\Phi = \frac{\phi_0}{\epsilon}$ $ds^2 = -\frac{d\rho^2}{\epsilon^2}$ AdM charge: $H = \frac{c^2}{\phi_0}$
- Cauchy surface

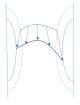


The configuration depends on the ends of Cauchy surface

• The configuration space can be described by $(c, \rho_{L,0}, \rho_{R,0})$ (Gauge redundancy)

- To study the symplectic potential, we take a variation of the solution and also the boundary of Cauchy surface
- In (u, v) coordinate $\delta^0 g_{ab} = 0$ $\delta^0 \Phi \neq 0$
- The boundary and the Cauchy surface also change
- To compare the two configurations, we need to pull the second Cauchy surface back to the first one

$$\delta g_{ab} = \nabla_a \xi_b + \nabla_b \xi_a \quad \delta \Phi = \delta^0 \Phi + \mathcal{L}_{\xi} \Phi$$



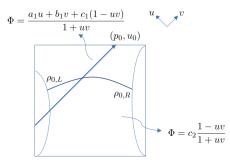
• The symplectic potential only depend on δg_{ab} not on $\delta \Phi$ $\Theta_{tot}[g_{\mu\nu}, \Phi; \delta g_{\mu\nu}, \delta \Phi]$ $= \int_{\Sigma} \sqrt{\sigma}(-1) t_{\rho}[g^{\mu\rho} \Phi \nabla^{\nu} \delta g_{\mu\nu} - g^{\nu\rho} \nabla^{\mu} \Phi \delta g_{\mu\nu}$ $-\Phi \nabla^{\rho}(g^{\mu\nu} \delta g_{\mu\nu}) + \nabla^{\rho} \Phi g^{\mu\nu} \delta g_{\mu\nu}] + \sum_{i} \Phi u^{\lambda} n^{\rho} \delta g_{\rho\lambda} |_{\partial_{i}}$

• When
$$\delta g_{\mu\nu} = \nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu}$$
 $\delta \Phi \neq 0$
 $\Theta_{\text{tot}} = \sum_{i} 2[-\Phi u_{\rho}K^{\rho\nu}\xi_{\nu} + n^{\nu}\nabla_{\nu}\Phi u_{\rho}\xi^{\rho} + \Phi u^{\lambda}D_{\lambda}(n^{\nu}\xi_{\nu}) - u^{\rho}\nabla_{\rho}\Phi n_{\nu}\xi^{\nu}]|_{\partial_{i}}$
 $\Theta_{\text{tot}} = \sum_{i} 2[\frac{c^{2}}{\phi_{0}}\delta\rho_{0,i} + \frac{c}{\phi_{0}}\rho_{0,i}\delta c]$
 $\Omega_{\text{tot}} = \delta\Theta_{\text{tot}} = 2\frac{c}{\phi_{0}}\delta c \wedge \delta(\rho_{0,R} + \rho_{0,L}) = \delta H \wedge \delta(\rho_{0,L} + \rho_{0,R})$

- Phase space ($H, \rho_{0,L}$), sympletic form $\Omega = \delta H \wedge \delta \rho_{0,L}$ Harlow, Jafferis 1804.01081
- Geometric description of $\rho_{0,L}$: We start from the right end of Cauchy surface, and shoot in a geodesic orthogonal to the boundary. It touches the left boundary. The relative distance to the left end of Cauchy is $\rho_{0,L}$

JT gravity with one particle

- We consider JT gravity coupled with one massless particle $S = S_{JT} + \int_{world line} d\lambda \frac{1}{2} e(\lambda) g_{ab}(y(\lambda)) \frac{\partial y^a}{\partial \lambda} \frac{\partial y^b}{\partial \lambda}$
- Phase space (*p*₀, *u*₀, *c*₂, *ρ*_{0,*R*})



• Inverse of symplectic potential, $A, B = (p_0, u_0, c_2, \rho_{0,R})$

$$\Omega^{AB} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{2\phi_0 p_0}{c_2^2} (\log u_0 + 1) & 0 \\ & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -8\pi G \frac{\phi_0}{c_2} \\ & -\frac{2\phi_0 p_0}{c_2^2} (\log u_0 + 1) & 0 & 8\pi G \frac{\phi_0}{c_2} & 0 \end{pmatrix}$$

for small u_0

• Traversable wormhole Hamiltonian equation $\Omega^{AB}(\delta X)_B = \xi^A$ $H_R = \frac{c_2^2}{\phi_0}$ $H_L = \frac{c_2^2 + 2p_0 u_0 c_2}{\phi_0}$ don't generate traversable wormhole $X = f(p_0)\mathcal{O}((u_0)^0)$ generate traversable wormhole $\langle \psi_L \psi_R \rangle \sim \frac{1}{c^2} e^{-L}$ belongs to this class

Gao, Jafferis, Wall 1608.05687 Maldacena, Stanford, Yang 1704.05333

Conclusion

- In this work, we study the covariant phase space with more careful treatment of the boundary terms
- With this formalism, we give an algorithm to calculate the Hamiltonian
- With the covariant phase space method, we study the phase space and symplectic form for pure JT gravity and JT gravity coupled with one point particle
- As a cross check, we re-derive the traversable wormhole effect

Open question

For Hamiltonian:

- H_{ξ} when ξ is not parallel to the boundary
- Conserved quantity defined at null infinity Wald Zoupas qc/9911095
 A definition with finite IR cut-off?
- The inner boundary: horizon
- Gravity's modular Hamiltonian; a direct proof of JLMS formula

Jafferis, Lewkowycz, Maldacena, Suh 1512.06431

Dong, Harlow, Marlof 1811.05382

A measure for C term;
 black hole first law → entanglement entropy first law

Open question

For JT gravity phase space:

- Multi-particle case; simplification in kinematics; SL(2) charge
- Relation with Swarzian Yang 1809.08647
 Kitaev, Suh, 1711.08467 1808.07032
- A microscopic counting of the variation of near extremal black hole entropy $\delta {\cal S}$

Thanks

Thanks for your attention!