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In general relativity, covariant phase space method was
developed by Iyer, Lee, Wald, and Zoupas to study
Hamiltonian and black hole first law without breaking
covariance

In this work, we study the covariant phase space with more
careful treatment of the boundary terms

With this formalism, we give an explicit algorithm to calculate
the Hamiltonian (without dealing with the B term
δ
∫
∂ ξ · B =

∫
∂ ξ ·Θ(φ, δφ))

To understand the covariant phase space method, we study
the phase space and the symplectic form for JT gravity

With this symplectic form, we give an explanation for the
traversable wormhole

In this work, we only focus on classical mechanics
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Classical mechanics

In classical mechanics, the Hamiltonian formalism is defined
by phase space, Hamiltonian, and the Possion bracket or Dirac
bracket (symplectic form)

The phase space and symplectic form include everything in
classical mechanics

In statistical mechanics, the microscopic state is the volume of
the phase space

In quantum mechanics, the classical phase space is the first
step of canonical quantization
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Hamiltonian vs general relativity

Hamiltonian formalism is not convenient to describe general
relativity

Hamiltonian formalism: a special coordinate and time
direction

General relativity: diffeomorphism symmetry

Covariant phase space method
Lee, Wald J.Math.Phys31 725(1990)

Iyer, Wald gr-qc/9403028 gr-qc/9503052 Wald Zoupas gr-qc/9911095

Phase space: (up to gauge equivalence,) every solution for the
equation of motion corresponds to one point in the phase
space
Symplectic form: derived from the action
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Simple example: point particle

Point particle S =
∫ tf
ti

dt 1
2 ẋ

2

Taking a variation
δS =

∫ tf
ti

dt(−ẍ)δx(t) + ẋδx |f −ẋδx |i
The pre-symplectic potential is defined as the initial (or final)
surface term under variation of the action; 1-form in
configuration space
The pre-symplectic form is the derivative of symplectic
potential in configuration space; 2-form in configuration space

Symplectic potential: θ[x , δx ] = ẋ(t)δx(t) = pδx
Symplectic form
ω[x , δ1x , δ2x ] = δ1θ[x , δ2x ]− δ2θ[x , δ1x ] = δ1pδ2x − δ2pδ1x
Hamiltonian H = θ[x , ẋ ]− L = 1

2p
2

Hamiltonian equation δH = ω[x , δx , δ2x = ẋ ]
or (δH)A = ωABξ

B , where ξ is a flow in phase space
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GR

For more complicated theories in higher dimension even with
gauge symmetry, the prescription still works

Action: S =
∫
L(n) +

∫
γ l

(n−1)

Diffeomorphism symmetry:
δφ = Lξφ, δL(n) = LξL(n) δl (n−1) = Lξ l (n−1)

ξ is parallel to the boundary
φ denote all of the fields including the matter fields and metric
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Taking a variation for the action

δL(n) = E (n)(φ)δφ+ dΘ(n−1)(φ, δφ)
−Θ(n−1)(φ, δφ) + δl (n−1) = F (n−1)(φ)δφ+ dC (n−2)(φ, δφ)

δS =

∫
E (n)(φ)δφ+

∫
∂
F (n−1)(φ)δφ

+(

∫
Σ(n−1),f

Θ(n−1)(φ, δφ) +

∫
∂Σ(n−2),f

C (n−2)(φ, δφ))

−(

∫
Σ(n−1),i

Θ(n−1)(φ, δφ) +

∫
∂Σ(n−2),i

C (n−2)(φ, δφ))
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Pre-symplectic potential
Θtot[φ, δφ] =

∫
Σ(n−1) Θ(n−1)(φ, δφ) +

∫
∂Σ(n−2) C(n−2)(φ, δφ)

Pre-symplectic form
Ωtot = δ1Θtot(φ, δ2φ)− δ2Θtot(φ, δ1φ)

=
∫

Σ(n−1) ω(n−1)(φ, δ1φ, δ2φ)

+
∫
∂Σ(n−2) (δ1C

(n−2)(φ, δ2φ)− δ2C(n−2)(φ, δ1φ))

Compared with Wald, we have an extra boundary term related
to C (n−2)

Iyer, Wald gr-qc/9403028 gr-qc/9503052

In Einstein-Hilbert action C ∼ δgabnaτb

In Einstein-Hilbert action, JT gravity, f (R) gravity, Lovelock
gravity, the C term vanish if we choose the gauge that the
foliation is orthogonal to the boundary

Non-zero C term: S =
∫
∇aRbc∇aRbc

It is convenient to keep the gauge redundancy and non-zero C
term in calculation
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Hamiltonian

Noether current: j
(n−1)
ξ = Θ(n−1)[φ,Lξφ]− ξ · L(n)

Noether charge: dj
(n−1)
ξ = 0 j

(n−1)
ξ = dQ

(n−2)
ξ

(under on-shell condition)

Relation with symplectic form current:

δj
(n−1)
ξ = ω(n−1)(φ, δφ,Lξφ) + d(ξ ·Θ(n−1))∫

Σ ω(φ, δφ,Lξφ) =
∫
∂Σ(δQξ − ξ ·Θ(φ, δφ))

Boundary action variation
−Θ(n−1)(φ, δφ) + δl (n−1) = F (n−1)(φ)δφ+ dC (n−2)(φ, δφ)

Hamiltonian∫
Σ ω

(n−1)(φ, δφ,Lξφ)+
∫
∂Σ δC

(n−2)(φ,Lξφ)−LξC (n−2)(φ, δφ)

=
∫
∂Σ δ(Q

(n−2)
ξ + C (n−2)(φ,Lξφ)− ξ · l (n−1))

Hamiltonian equation Ωtot[φ, δφ,Lξφ] = δHξ
Hξ =

∫
∂Σ(Qξ + C (n−2)(φ,Lξφ)− ξ · l (n−1))
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Hamiltonian (Q(n−2) = dj (n−1))
Hξ =

∫
∂Σ(Qξ + C (n−2)(φ,Lξφ)− ξ · l (n−1))

=
∫

Σ Θ(n−1)(φ, δφ,Lξφ) +
∫
∂Σ C (n−2)(φ, δφ,Lξφ)

−
∫

Σ ξ · L
(n)(φ)−

∫
∂Σ ξ · l

(n−1)(φ)

Classical mechanics: H = pq̇ − L
Hawking, Horowitz gr-qc/9501014

Ambiguity I:
S =

∫
L(n) +

∫
Γ l

(n−1) ⇒ L→ L + dX l → l + X
Ambiguity II:
δL(n) = E (n)(φ)δφ+ dΘ(n−1)(φ, δφ)
−Θ(n−1)(φ, δφ) + δl (n−1) = F (n−1)(φ)δφ+ dC (n−2)(φ, δφ)
⇒ Θ→ Θ + dY C → C − Y
The Hamiltonian have no ambiguities

Jie-qiang Wu Covariant Phase Space with Boundaries



Introduction GR JT gravity Conclusions

Relation with Brown York tensor

In Einstein-Hilbert action, JT gravity, Hξ in our algorithm
matches with the Brown York tensor’s calculation

A general proof:

Taking a variation δφ = Lξφ ξ |∂ 6= 0
δS = Θtot,f [φ,Lξφ]−Θtot,i [φ,Lξφ] +

∫
γ

√
−γ∇aξbT

ab

= (Θtot,f [φ,Lξφ]−
∫
∂Σf

dxn−2
√
hλaξbT

ab)

−(Θtot,i [φ,Lξφ]−
∫
∂Σi

dxn−2
√
hλaξbT

ab)

Diffeomorphism symmetry δL = LξL δl = Lξ l
δS =

∫
LξL(n) +

∫
γ Lξ l

(n−1)

= (
∫

Σf
ξ ·L(n) +

∫
∂Σf

ξ · l (n−1))− (
∫

Σi
ξ ·L(n) +

∫
∂Σi

ξ · l (n−1))

Compare the two equations
Hξ = Θtot[φ,Lξφ]− (

∫
Σ ξ · L +

∫
∂Σ ξ · l)

=
∫
∂Σf

dxn−2
√
hλaξbT

ab
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Black hole first law

The C term don’t change black hole first law
δHξ =

∫
Σ ω(φ, δφ,Lξφ) +

∫
∂Σ(δC (φ,Lξφ)− LξC (φ, δφ))

=
∫
∂Σ(δQξ−ξ ·Θ(φ, δφ))+

∫
∂Σ(δC (φ,Lξφ)−LξC (φ, δφ))

Under stationary black hole background Lξφ = 0, the C
related term vanish∫
∂Σ(δC (φ,Lξφ)− LξC (φ, δφ)) = 0

The first law goes back to Wald’s derivation
Iyer, Wald gr-qc/9403028
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Gauge invariance

When ξ |∂= 0 , Hξ = 0

Hξ only depend on ξ |∂ so is gauge invariant
Hξ =

∫
∂Σ(Qξ + C (n−2)(φ,Lξφ)− ξ · l (n−1))

Criteria of gauge invariance of Θtot and Ωtot:
Θtot[φ,Lξφ] = 0 Ωtot[φ, δφ,Lξφ] = 0 (ξ |∂= 0)

Ωtot[φ, δφ,Lξφ] = δHξ = 0
Ωtot is gauge invariant

Θtot[φ,Lξφ]−
∫
ξ · L−

∫
ξ · l = Hξ = 0

Θtot is gauge invariant if and only if the bulk Lagrangian
density vanish under on-shell condition
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Symplectic form

To have a better understanding for covariant phase space, we
explicitly build the phase space and calculate the symplectic
form in JT gravity
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Pure JT gravity

JT gravity S =
∫
dxdt
√
−gΦ(R + 2) +

∫
dt
√
−γΦ(K − 1)

Almheiri, Polchinski 1402.6334 Maldacena, Stanford, Yang 1606.01857

The bulk Lagrangian density vanish under on-shell condition,
so the symplectic potential is gauge invariant

Solutions: Φ = c 1−uv
1+uv ds2 = − dudv

(1+uv)2

Boundary condition: Φ = φ0
ε ds2 = −dρ2

ε2

AdM charge: H = c2

φ0

Cauchy surface

The configuration depends on the ends of Cauchy surface

The configuration space can be described by (c , ρL,0, ρR,0)
(Gauge redundancy)
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To study the symplectic potential, we take a variation of the
solution and also the boundary of Cauchy surface

In (u, v) coordinate δ0gab = 0 δ0Φ 6= 0

The boundary and the Cauchy surface also
change

To compare the two configurations, we
need to pull the second Cauchy surface
back to the first one
δgab = ∇aξb +∇bξa δΦ = δ0Φ + LξΦ
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The symplectic potential only depend on δgab not on δΦ
Θtot[gµν ,Φ; δgµν , δΦ]

=
∫

Σ

√
σ(−1)tρ[gµρΦ∇νδgµν − gνρ∇µΦδgµν

−Φ∇ρ(gµνδgµν) +∇ρΦgµνδgµν ] +
∑

i Φuλnρδgρλ |∂i
When δgµν = ∇µξν +∇νξµ δΦ 6= 0
Θtot =

∑
i 2[−ΦuρK

ρνξν + nν∇νΦuρξ
ρ

+ΦuλDλ(nνξν)− uρ∇ρΦnνξ
ν ] |∂i

Θtot =
∑

i 2[ c
2

φ0
δρ0,i + c

φ0
ρ0,iδc]

Ωtot = δΘtot = 2 c
φ0
δc ∧ δ(ρ0,R + ρ0,L) = δH ∧ δ(ρ0,L + ρ0,R)

Phase space (H, ρ0,L), sympletic form Ω = δH ∧ δρ0,L

Harlow, Jafferis 1804.01081

Geometric description of ρ0,L:
We start from the right end of Cauchy surface, and shoot in a
geodesic orthogonal to the boundary. It touches the left
boundary. The relative distance to the left end of Cauchy is
ρ0,L
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JT gravity with one particle

We consider JT gravity coupled with one massless particle

S = SJT +
∫
world line dλ

1
2e(λ)gab(y(λ))∂y

a

∂λ
∂yb

∂λ

Phase space (p0, u0, c2, ρ0,R)
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Inverse of symplectic potential, A,B = (p0, u0, c2, ρ0,R)

ΩAB =


0 1

2
2φ0p0

c2
2

(log u0 + 1) 0

−1
2 0 0 0

0 0 0 −8πG φ0
c2

−2φ0p0

c2
2

(log u0 + 1) 0 8πG φ0
c2

0

+O(u0 log2 u0)

for small u0

Traversable wormhole
Hamiltonian equation ΩAB(δX )B = ξA

HR =
c2

2
φ0

HL =
c2

2 +2p0u0c2

φ0
don’t generate traversable

wormhole
X = f (p0)O((u0)0) generate traversable wormhole
〈ψLψR〉 ∼ 1

ε2 e
−L belongs to this class

Gao, Jafferis, Wall 1608.05687 Maldacena, Stanford, Yang 1704.05333
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Conclusion

In this work, we study the covariant phase space with more
careful treatment of the boundary terms

With this formalism, we give an algorithm to calculate the
Hamiltonian

With the covariant phase space method, we study the phase
space and symplectic form for pure JT gravity and JT gravity
coupled with one point particle

As a cross check, we re-derive the traversable wormhole effect
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Open question

For Hamiltonian:

Hξ when ξ is not parallel to the boundary

Conserved quantity defined at null infinity
Wald Zoupas qc/9911095

A definition with finite IR cut-off?

The inner boundary: horizon

Gravity’s modular Hamiltonian;
a direct proof of JLMS formula
Jafferis, Lewkowycz, Maldacena, Suh 1512.06431

Dong, Harlow, Marlof 1811.05382

A measure for C term;
black hole first law → entanglement entropy first law

Jie-qiang Wu Covariant Phase Space with Boundaries



Introduction GR JT gravity Conclusions

Open question

For JT gravity phase space:

Multi-particle case; simplification in kinematics; SL(2) charge

Relation with Swarzian Yang 1809.08647

Kitaev, Suh, 1711.08467 1808.07032

A microscopic counting of the variation of near extremal black
hole entropy δS
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Thanks

Thanks for your attention!
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