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What is a Black Hole?



The Black Hole I understand is:
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-1.39094803659094 -1.39094803659091 -1.38882328162496
-1.38882328162486 -1.38648636076752 -1.38648636076747
-1.38417212341754 -1.38417212341751 -1.38197461694833
-1.38197461694832 -1.38001241876809 -1.38001241876807
-1.37818654140445 -1.37818654140443 -1.37616748049896
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......

......

This is what a Black Hole looks like to me, it’s complicated and
random.
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random.
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We can do a little bit coarse grain.
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This is a Near-Extremal Black Hole.



This is a Near-Extremal Black Hole. This is the beauty of Gravity.









I will ignore:



Near-Extremal black holes have a universal structure near their
horizons: there is an AdS2 throat with a slowly varying internal
space. [See Finn’s talk in the morning]



Near-Extremal black holes have a universal structure near their
horizons: there is an AdS2 throat with a slowly varying internal
space. Its low energy gravitational dynamics is captured universally
by the following effective action in two dimensions:

I = −φ0

2

(∫
R + 2

∫
∂M

K

)
︸ ︷︷ ︸

Einstein-Hilbert Action

−1

2

(∫
M
φ(R + 2) + 2

∫
∂M

φbK

)
︸ ︷︷ ︸

Jackiw-Teitelboim action

.

(1)
where the dilaton field φ+ φ0 represents the size of internal space.
We have separated the size of internal space into two parts: φ0 is
its value at extremality. It sets the value of the extremal entropy
which comes from the first term in (1). φ is the deviaton from this
value.
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The action
∫
φ(R + 2) + 2

∫
φbK is the so-called

Jackiw-Teitelboim action and will be the main subject we want to
discuss in this talk.

We will quantize this action using a picture
suggested by Kitaev and then explore the features of the full
quantum theory. In particular we will write down a formula to
calculate all point correlation functions with gravitational
backreactions and also an exact expression of the Hartle-Hawking
wavefunction. Using the exact HH wavefunction we will explore
the validity of classical geometry in the highly fluctuating region.
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We will mainly study the Euclidean property of the Black Hole,
which is corresponding to put this system on a disk:

The boundary is the cut of the Euclidean space where the size of
S2 (the dilaton field) has a relative order one amount of change.



Since the bulk Jackiw-Teitelboim action is linear in φ, we can
integrate out the dilaton field which sets the metric to that of
AdS2 and removes the bulk term in the action.

This leaves only
the term involving the extrinsic curvature:

I = −φb
∫

du
√
gK (2)

We want to look at the limit of large φb, then the action is
divergent. The divergence is simply proportional to the total length
so we can introduce a counterterm to cancel it:

I = −φb
∫

du
√
g(K − 1). (3)

This corresponds to a shift of ground state energy.
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We can now use the Gauss-Bonnet theorem to relate the extrinsic
curvature to an integral over the bulk:

I = −φb
∫
∂M

du
√
g(K − 1)

= −φb
(

2πχ(M)− 1

2

∫
M
R −

∫
∂M

du
√
g

)
= −2πqχ(M)− qA + qL, q ≡ φb, L = βφb (4)

The first term is a purely topological piece and is a constant, the
second term is a coupling to a gauge field with constant field
strength and the last term is the proper length of the “boundary
particle”. So we are left with a problem of quantizating a particle
in AdS2 with fixed proper length.
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Such a problem in flat space was considered by Polyakov where he
shows that the following problem is directly related to a
nonrelativistic particle propagator:∫

D~xe−m0τ̃δ(~̇x2 − 1)

= e−µ
2τ 〈x ′|e−τH |x〉

= e−µ
2τ

∫
Dx exp

(
−
∫ τ

0
dτ ′~̇x2

)
(5)

µ2 is the regularized mass and τ̃ is related to τ by a multiplicative
renormalization.
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We have the exact same problem with small modifications:

first is
put this particle in H2 and second is to couple it to gauge field.
Both of them will not change Polyakov’s argument and we are left
with the path integral as a propagator of a nonrelativistic particle
coupled with external gauge field in H2. Writing in Poincare

coordinates ds2 = dx2+dy2

y2 we have:

S =

∫
du

ẋ2 + ẏ2

y2
+ ib

∫
du

ẋ

y
− (b2 +

1

4
)

∫
du , b = iq (6)

If b is real we will call it a magnetic field, when q is real we will
call it an “electric” field.
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ẋ2 + ẏ2
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We see a close connection between the 2d gravity problem and a
particle quantum mechanics.



However I want to stress an important difference between these
two problems.

Both the particle system and the gravitational system have
SL(2,R) symmetry. While the SL(2,R) symmetry is a global
symmetry in the particle case, it is a gauge symmetry in the
gravitational system. This is because in gravity the physical region
is inside the boundary and different SL(2,R) transformation does
not change the physical region. There is an old name for this effect
which is called the “Mach Principle”.Such an effect is also related
with Non-factorization property of the final wavefunction.
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When b is real, this system is fairly conventional and it was solved
by [Comtet 1987].

Its detailed spectrum depends on b. For very
large b we have a series of Landau levels and also a continuous
spectrum. In fact, already the classical problem contains closed
circular orbits, related to the discrete Landau levels, as well as
orbits that go all the way to infinity.
The number of discrete Landau levels decreases as we decrease the
magnetic field and for 0 < b < 1/2 we only get a continuous
spectrum.The system has an SL(2) symmetry and the spectrum
organizes into SL(2) representations, which are all in the
continuous series for 0 < b < 1/2. For real q we also find a
continuous spectrum which we can view as the analytic
continuation of the one for this last range of b.
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spectrum.The system has an SL(2) symmetry and the spectrum
organizes into SL(2) representations, which are all in the
continuous series for 0 < b < 1/2. For real q we also find a
continuous spectrum which we can view as the analytic
continuation of the one for this last range of b.



The action is invariant under SL(2,R) transformations generated
by

L0 = xpx + ypy ; L−1 = px ; L1 = (y2− x2)px − 2xypy − 2iqy
(7)

And the Hamiltonian is proportional to the Casimir operator. So we
can solve the problem by first diagonalize with respect to L−1 with
continuous quantum number k and then diagonalize with respect
to the Hamiltonian which have continuous quantum number
j = 1

2 + is, so that H|j , k〉 = j(1− j)|j , k〉 and L−1|j , k〉 = k |j , k〉.
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And so we can calculate the exact partition function as:

Z = Tre−βH

=

∫ ∞
0

ds

∫ ∞
−∞

dk

∫
M

dxdy

y2
e−β

s2

2 f ∗s,k(x , y)fs,k(x , y)

= VAdS

∫ ∞
0

dse−β
s2

2
s

2π

sinh(2πs)

cosh(2πq) + cosh(2πs)
. (8)

where fs,k is the eigenfunctions of the system. To retlated to
gravitational partition function we need to modifies this slightly.
First we need to put back to topological piece with is eS0+2πq;
Second we should divide out the volume factor since the
gravitational system has SL(2,R) gauge symmetry. Therefore we
got the total density of states as:

ρ(s) = eS0e2πq 1

2π

s

2π

sinh(2πs)

cosh(2πq) + cosh(2πs)

= eS0e2πq s

2π2

∞∑
k=1

(−1)k−1e−2πqk sinh(2πsk). (9)

The summation is related with multi-instanton solutions.
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Let us discuss some defects of this result.

First when we doing the
path integral of this particle in magnetic field, we are summing of
all paths in H2. This in particular will include the self-intersection
ones. Those paths do not have an obvious interpretation in
gravitational system. So maybe we should instead treat this
particle as a polymer [Polyakov].
Second, when we consider couple this system to matter, there will
be additional contributions from the change of boundary and those
effect could in principle affect our result.
However there is a sweet limit that avoids all those issues. That is
the large q limit. Basically when q is large, it pushes the boundary
particle to the asymptotic infinity and demands that the extrinsic
curvature to be close to 1. Therefore there will be no
self-intersecting curves and the contribution of matter field will be
local and only affects the overall coefficient as demanded by
symmetry.
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At the large q limit, the density of state simplifies:

ρ(s) = eS0
s

2π2
sinh(2πs), E =

s2

2
,

ZJT =

∫ ∞
0

dsρ(s)e−β
s2

2 = eS0
1

√
2πβ

3
2

e
2π2

β . (10)

This result was first obtained by [Stanford-Witten] and later
recovered by [Bagrets-Altland-Kamenev],[Mertens-Turiaci-Verlinde]
and [Kitaev-Suh] by relating this limit to the Schwarzian action.
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We can also work out the propagator of the boundary particle,

because at this limit the particle is at asymptotic infinity, we
should rescale the radial coordinate and we denote that as
z = qy .The propagator takes the following form:

G (u, x1, x2) = e−2πqθ(x2−x1)K̃ (u, x1, x2); .

K̃ (u, x1, x2) = e
−2

z1+z2
x1−x2

2

π2`

∫ ∞
0

dss sinh(2πs)e−
s2

2
uK2is(

4

`
); (11)

where ` = |x1−x2|√
z1z2

is a function of geodesic distance.

The factor e−2πqθ(x2−x1) is a direct consequence of the fact that
the particle should have extrinsic curvature close to 1 and in
particular cannot be bended. This particular orientation indicates
the side of the interior.
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Since the propagator sums over all the gravitatinal fluctuations
from location x1 to x2.

Using that we can write down an exact
formula for all gravitational bakcreacted correlators. The procedure
is the following, given any QFT living on H2, we can first solve its
boundary correlators which is expressed as a one dimensional CFT
correlation functions:

〈O1(x1)...On(xn)〉QFT = q−
∑

∆i z∆1
1 ..z∆n

n 〈O1(x1)...On(xn)〉CFT
(12)

Next we should dress this correlator with the gravitational
propagator:

〈O1(u1)...On(un)〉QG =

∫
x1>x2..>xn

∏n
i=1 dxidzi

V(SL(2,R))
×

×K̃ (u12, x1, x2)...K̃ (un1, xn, x1)z∆1−2
1 ..z∆n−2

n 〈O1(x1)...On(xn)〉CFT.

(13)
The ordering is from the θ function, and we mod out a SL(2,R)
group because that is a redundancy in our description.
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Notice that in usual AdS/CFT the correlators
〈O1(x1)...On(xn)〉QFT are an approximation to the full answer.

This is sometimes computed by Witten diagrams. We get a better
approximation by integrating over the metric fluctuations. In this
case, the non-trivial gravitational mode is captured by the
boundary propagator. The formula we derived includes all the
effects of quantum gravity in the JT theory (in the large q limit).
The final diagrams consist of the Witten diagrams for the field
theory in AdS plus the propagators for the boundary particle and
we can call them “Gravitational Feynman Diagrams”
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For example, Let us consider the case of two point function, where
we have the gravitational feynman diagram as follows:

〈O1(u)O2(0)〉QG =

u

᷎-u

O1 O2 (14)



Written in terms of formula, we have the QFT two point function:

〈O1(x1)O2(x2)〉QFT = z∆
1 z∆

2

1

|x1 − x2|2∆
. (15)

And then the Quantum Gravity result is:

1

V(SL(2,R))

∫
x1>x2

dx1dx2dz1dz2

z2
1 z

2
2

∫ ∞
0

ds1ds2ρ(s1)ρ(s2)e−
s2
1
2
u− s2

2
2

(β−u)

×K2is1(
4
√
z1z2

|x1 − x2|
)K2is2(

4
√
z1z2

|x1 − x2|
)(

√
z1z2

|x1 − x2|
)2∆+2.

(16)

Where I have already put in the explicit formula for the
gravitational propagator. This integral can be done first use
SL(2,R) to gauge fix z1 = z2 = 1 and x2 = 0 and then we can do
the spatial integral.



Written in terms of formula, we have the QFT two point function:

〈O1(x1)O2(x2)〉QFT = z∆
1 z∆

2

1

|x1 − x2|2∆
. (15)

And then the Quantum Gravity result is:

1

V(SL(2,R))

∫
x1>x2

dx1dx2dz1dz2

z2
1 z

2
2

∫ ∞
0

ds1ds2ρ(s1)ρ(s2)e−
s2
1
2
u− s2

2
2

(β−u)

×K2is1(
4
√
z1z2

|x1 − x2|
)K2is2(

4
√
z1z2

|x1 − x2|
)(

√
z1z2

|x1 − x2|
)2∆+2.

(16)

Where I have already put in the explicit formula for the
gravitational propagator. This integral can be done first use
SL(2,R) to gauge fix z1 = z2 = 1 and x2 = 0 and then we can do
the spatial integral.



Written in terms of formula, we have the QFT two point function:

〈O1(x1)O2(x2)〉QFT = z∆
1 z∆

2

1

|x1 − x2|2∆
. (15)

And then the Quantum Gravity result is:

1

V(SL(2,R))

∫
x1>x2

dx1dx2dz1dz2

z2
1 z

2
2

∫ ∞
0

ds1ds2ρ(s1)ρ(s2)e−
s2
1
2
u− s2

2
2

(β−u)

×K2is1(
4
√
z1z2

|x1 − x2|
)K2is2(

4
√
z1z2

|x1 − x2|
)(

√
z1z2

|x1 − x2|
)2∆+2.

(16)

Where I have already put in the explicit formula for the
gravitational propagator.

This integral can be done first use
SL(2,R) to gauge fix z1 = z2 = 1 and x2 = 0 and then we can do
the spatial integral.



Written in terms of formula, we have the QFT two point function:

〈O1(x1)O2(x2)〉QFT = z∆
1 z∆

2

1

|x1 − x2|2∆
. (15)

And then the Quantum Gravity result is:

1

V(SL(2,R))

∫
x1>x2

dx1dx2dz1dz2

z2
1 z

2
2

∫ ∞
0

ds1ds2ρ(s1)ρ(s2)e−
s2
1
2
u− s2

2
2

(β−u)

×K2is1(
4
√
z1z2

|x1 − x2|
)K2is2(

4
√
z1z2

|x1 − x2|
)(

√
z1z2

|x1 − x2|
)2∆+2.

(16)

Where I have already put in the explicit formula for the
gravitational propagator. This integral can be done first use
SL(2,R) to gauge fix z1 = z2 = 1 and x2 = 0 and then we can do
the spatial integral.



The final result is the following:

〈O1(u)O2(0)〉QG =
1

N

∫
ds1ds2ρ(s1)ρ(s2)e−

s2
1
2
u− s2

2
2

(β−u)

×|Γ(∆− i(s1 + s2))Γ(∆ + i(s1 − s2))|2

22∆+1Γ(2∆)

(17)

The same result was obtained by [Bagrets-Altland-Kamenev] and
[Mertens-Turiaci-Verlinde] using Liouville theory approach.
This exact two point function can be directly compared with exact
diagonalization of SYK models which at low energy have a
holographic dual of AdS2.
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[Kobrin-Yang-Yao-et al] (To be published)



Next we want to discuss about the WdW wavefunction.

In
particular we want to talk about the Hartle-Hawking state with
fixed Euclidean time evolution u. We can use the Hamiltonian
constraint to fix the location of future time slice along the geodesic
between to boundary points. Then the WdW wavefunction can be
evaluated by the Euclidean path integral of this region and is
expressed in the basis of the geodesic length ` between two
boundary points. [See Wu’s talk yesterday]
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The Euclidean action on this path then facotrizes into two parts,

one is the particle in external gauge field for the u boundary we
discussed before and the second part is a wilson line of the external
gauge field stretch along the geodesic `. Since both the external
gauge field and the Hyperbolic disc is rigid, the seond factor does
not flucutates. Therefore to calculate the path integral of the
WdW wavefunction we only need to integrate out the boundary
flucutation which is the propogator K̃ (u, x1, x2) and then muliplied
by the wilson line eq

∫
L a. The wilson line exactly cancelles the

non-gauge invariant part of K̃ : e
−2

z1+z2
x1−x2 . And we get the exact

WdW wavefunction:

Ψ(u; `) =
2

π2`

∫ ∞
0

dss sinh(2πs)e−
s2

2
uK2is(

4

`
), ` =

|x1 − x2|√
z1z2

.

(18)
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not flucutates. Therefore to calculate the path integral of the
WdW wavefunction we only need to integrate out the boundary
flucutation which is the propogator K̃ (u, x1, x2) and then muliplied
by the wilson line eq

∫
L a. The wilson line exactly cancelles the

non-gauge invariant part of K̃ : e
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The classical limit of the WdW wavefunction can be evaluated by
going to the integral representation of the bessel function and
integrate out s:

Ψ(u; `) =

√
2

π3/2u3/2

1

`

∫ ∞
−∞

dξ(π + iξ)e−2 (ξ−iπ)2

u
− 4
`

cosh ξ (19)

whose saddle point equation matches with the classical evaluation
of the WdW wavefunction in [Harlow-Jafferis].
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Now we have the exact WdW wavefunction in this quantum
gravity theory of near-extremal black hole system, we can
investigate the behavior of classical geometry at the quantum
limit.

The most obvious thing is the Einstein-Rosen Bridge V
between the two boundaries. This can be evaluated by calculating
the expectation value of the geodesic length d of Ψ(u, `). We are
interested in the long time behavior of this quantity, this means
u = β

2 + it with t � 1� β and we got:

V(t) ∼ 2πt

β
. (20)

The length of the Einstein-Rosen Bridge has linear growth
classically was conjectured to relate with the complexity growth of
the system, our result shows that the geometry maintains this
behavior at the highly quantum limit. Actually this was first
predicted by Susskind in paper [Black Holes and Complexity
Classes].
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With the knowledge of the wavefunction, let’s look back again to
the partition function.

We can seperate the geometry into the
following structure:

u12

u23
u31

ʎ 12

ʎ 23ʎ 31

That is there are three wavefunctions glued together with the
interior. The path integral of the interior consists of product of
three wilson lines. Let’s call this product I (`12, `23, `31), it satisfies:

I (`12, `23, `31) =
16

π2

∫ ∞
0

dττ sinh(2πτ)K2iτ (
4

`12
)K2iτ (

4

`23
)K2iτ (

4

`31
)

(21)
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Remember the notion of the bessel function as a coarse grained
Black Hole microstates, this identity tells us that the interior is a
GHZ state.

If we understand this partition function from the point of view of
inner product of two states, then we can understand this interior as
a gravitational scattering amplitude.
This property is very useful for calculating higher point functions in
our previous formula.
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Future directions:
Understand the finite q theory [Kitaev-Suh] with proper
quantization (Polymer).
Check the quantum gravity effect in other holographic models in
Near-Extremal Background. [Larsen], [Papadimitriou]...
Effects on RG flow from gravitational backreaction.
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