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Introduction

Noether’s theorem applied to general relativity implies that the
conservation law for the energy and momentum of the gravitational field
is an identity (the Bianchi identity), rather than requiring satisfaction of
the equations of motion of GR.

Klein and Hilbert took this to mean that there is no analogue of energy
conservation in general relativity.

Research after Penrose (1982) shifted to defining quasilocal quantities: in
particular, to defining suitable tensors over spacelike surfaces that
reproduce well-known formulas such as the ADM mass for various
solutions of Einstein’s equations.

Tensors thus defined still have some ambiguities, due to the possibility to
add boundary terms without changing the equations of motion.

In AdS-CFT, the asymptotic Brown-York (1993) stress-energy tensor is
identified with the expectation value of the stress-energy tensor of the
CFT.
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Noether’s Theorems and the Energy-Momentum Tensor

Consider Maxwell’s theory (with Fµν = ∂µAν − ∂νAµ):

S = −1

4

∫
d4x Fµν F

µν , Eµ(A) = ∂νFµν = 0 .

Noether’s first theorem: the conservation of the energy-momentum
tensor density Tµν follows from the translational symmetry of Minkowski
spacetime, i.e. under δxµ = ξµ:

Tµ
ν := δµν L −

∂L
∂(∂µAλ)

∂νAλ = Fµλ ∂νAλ −
1

4
δµν F

λσ Fλσ

∂µT
µ
ν = (zero by e.o.m.) (weak conservation law)

The energy-momentum tensor admits “improvement terms” (Belinfante 1939):

T ′µν := Tµ
ν + ∂λ U

[µλ]
ν

is also conserved. Such improvement terms are one way to bring define
an energy-momentum tensor with the standard form:

T ′µν = Fµλ Fνλ −
1

4
δµν F

λσ Fλσ + (zero by eom) .
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Noether’s Theorems and the Energy-Momentum Tensor

General relativity, through its equation Gµν = −8πGN Tµν , uniquely
detects the energy-momentum tensor of its sources—it fixes the
“improvement term”. The one that appears when coupling GR to
Maxwell’s theory is indeed the standard one.

Noether’s second theorem: the invariance of Maxwell’s action under
δAµ = ∂µλ implies ∂µEµ(A) = ∂µ∂νFµν = 0 identically, by the
anti-symmetry of Fµν . (If we couple Maxwell’s theory to a source Jµ,
then we find ∂µJµ = 0, i.e. charge conservation. Thus a theory with a
gauge symmetry can only be coupled to a conserved current.)

General relativity in vacuum: Eµν(g) = Gµν = Rµν − 1
2 gµν R = 0.

The invariance of the Einstein-Hilbert action under an infinitesimal
coordinate transformation, δxµ = ξµ(x), δgµν = ∇µξν +∇νξµ, leads to
the 4 (contracted) Bianchi identities: ∇µGµν = 0.

If the theory is coupled to matter, this gives the covariant conservation
law ∇µTµν = 0.
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Noether’s Theorems (Brading and Brown, 2003)

Noether’s first theorem considers transformations with ρ constant
parameters, η, i.e. global symmetries. For every continuous global
symmetry there exists a conservation law (and viceversa):(

∂L
∂φi
− ∂µ

∂L
∂(∂µφi )

)
ηik = ∂µ j

µ
k , k = 1, · · · , ρ .

The ρ currents jµk are conserved provided the Euler-Lagrange equations
are satisfied. Hilbert and Noether called these proper conservation
laws, because they are not identities, i.e. they are non-trivially satisfied.
(The theorem also gives an independent expression for jµk ).

Noether’s second theorem gives two equations: a set of identities
between the equations of motion, and a conservation law:

∂µ

(
jµk −

(
∂L
∂φi
− ∂ν

∂L
∂(∂νφi )

)
bµki

)
= 0 (1)
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Noether’s Theorems (Brading and Brown, 2003)

Hilbert and Noether called the latter an improper conservation law,
because it does not require use of the equations of motion. One can
define a new current, Θ, as follows:

Θµ
k := jµk −

(
∂L
∂φi
− ∂ν

∂L
∂(∂νφi )

)
bµki , ∂µ Θµ

k = 0

⇒ ∃ U : Θµ
k = ∂ν U

µν
k , Uµνk = −Uνµk

∂µ ∂ν U
µν
k = 0 .

U is called the superpotential. The conservation of Θ is an identity
(Bianchi identity), and it follows from U’s antisymmetry (recall Maxwell’s
theory, where under a gauge transformation: ∂νF

µν = ∂µJ
µ = 0).
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Noether’s Theorems

Noether’s “third theorem”: ‘Given [an action] S invariant under the
group of translations, then the energy relations [i.e. the conservation laws
corresponding to translations] are improper [i.e. the divergences vanish
identically] iff S is invariant under an infinite group which contains the
group of translations as a subgroup.’ (Noether, 1918).

Thus only if the finite group is a subgroup of an infinite dimensional
group are the conservation laws of the finite group improper (i.e. they are
identities). Otherwise they are always proper, i.e. non-trivial.

So far so good. Let us now look at Klein and Hilbert’s interpretation of
the theorem—and their worries.
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Klein’s and Hilbert’s worries

Klein to Hilbert: ‘You know that Frl. Noether advises me continuously in
my work, and that it is actually only through her that I have penetrated
in this matter. When I recently told Frl. Noether about my results on
your energy vector, she announced that she had derived the same
consequences from your note already a year ago, and that she wrote it
down in a manuscript back then.’ [Klein communicated two of Noether’s
papers to the Königlichen Gesellschaft der Wissenschaften zu Göttingen.]
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Klein’s and Hilbert’s worries

Felix Klein (1917) worried that, in GR, energy and momentum
conservation are identities, without requiring the equations of motion to
be satisfied (they are improper). It is a strong conservation law.

David Hilbert: in general relativity, there are no proper conservation
laws (Kosmann-Schwarzbach, p. 63).

Hilbert, 1917: ‘I hoped that, in the case of the general theory of relativity,
energy equations that correspond to the energy equations of [classical
mechanics]... do not exist at all. Indeed I would like to denote this
circumstance as a distinctive feature of the general theory of relativity’.

Noether’s “third theorem” proves that in GR there is no proper
description of energy and momentum (of this type): ‘As Hilbert expresses
his assertion, the lack of a proper energy law constitutes a characteristic
of the general theory of relativity’.
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Klein’s challenge to Einstein

‘Thus the above statement cannot be regarded analogous to the
conservation law of energy in ordinary mechanics. For when we write the
latter as d(T + U)/dt = 0, this differential equation is not satisfied
identically [as the Bianchi identity is], but only as a consequence of the
differential equations of mechanics.’

Klein (1917): ‘After all this, I can barely believe that it is useful to
designate [Einstein’s] very arbitrarily built quantities tµν [the
pseudotensor] as the components of the energy of the gravitational field.’
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Klein’s and Hilbert’s worries

However, as the literature has emphasised, from the fact that the
conservation law is improper, it does not by itself follow that the law
could not express a physical (non-)conservation law.
(A more basic question is: What is the definition of energy and
momentum for the gravitational field?)

A case in point is Maxwell’s theory: While in vacuum, gauge invariance
implies ∂µ ∂ν F

µν = 0, which is trivially satisfied by the antisymmetry of
the Faraday tensor: when we couple Maxwell’s theory to matter, gauge
invariance leads to charge conservation:

Thus Noether’s second theorem restricts the properties of the matter
that can be coupled to pure Maxwell’s theory while preserving its gauge
symmetry, and the ensuing conservation law does have physical content.

But even taking this in our stride: if we try to assign a physical
significance to the conservation of the energy-momentum tensor in GR
along similar lines, two challenges lie ahead...
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Klein’s challenge and Einstein’s proposal

Two further questions that Klein’s and Hilbert’s challenge suggest:

(i) When GR is coupled to matter, the Bianchi identity implies the
conservation law ∇µTµ

ν = 0. But Tµ
ν is the energy-momentum tensor

of matter rather than the gravitational field. So, what is the
definition of the energy and momentum of the gravitational field itself?

(ii) ∇µTµ
ν = 0 is not a conservation law in the usual sense, for the

energy-momentum tensor cannot be straightforwardly integrated to
give a conserved vector current (this can be done if there is a Killing
vector).

Einstein’s idea: ∇µTµ
ν = 0 contains a coupling to gravity through the

Christoffel symbols. So, try to construct an energy-momentum tensor for
gravity from the Christoffel symbols—viz. introduce a pseudotensor.
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Einstein’s Pseudotensor

Einstein (1916) introduced a pseudotensor tµν such that the
conservation law contains an ordinary derivative:

∂µ (
√
g Tµ

ν + tµν) = 0 ⇒ ∇µ Tµ
ν = 0 .

He interpreted tµν as a “gravitational energy-momentum tensor” density.
One can associate with this tensor a superpotential, sµλν , such that:

√
g Tµ

ν + tµν = ∂λ s
µλ
ν , ∂µ ∂λ s

µλ
ν = 0 .

Einstein obtained the superpotential from a boundary term in the action
(his 1916 action differed from the Einstein-Hilbert action by a boundary
term).

Problem: t is not a tensor! And the gravitational energy density, t, can
be made to vanish at any given point in appropriately chosen coordinates.
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Other Pseudotensors

There are an infinite number of pseudotensors. For define a pseudotensor
with an arbitrary superpotential:

16πGN t
µ
ν := −2

√
g Gµ

ν + ∂λ U
µλ
ν

⇒ 16πGN (tµν +
√
g Tµ

ν) = ∂λ U
µλ
ν

still satisfies the conservation laws as long as U is antisymmetric:

Uµλν = U [µλ]
ν .

Challenges:

(i) The pesudotensor is not covariant.
(ii) There are an infinite number of them.
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Quasi-Local Energy: Penrose (1982)

Schrödinger (1950) called the pseudotensors ‘sham tensors’.

Misner, Thorne, Wheeler (1973, p. 467): ‘Anyone who looks for a magic
formula for “local gravitational energy-momentum” is looking for the
right answer to the wrong question. Unhappily, enormous time and
effort were devoted in the past to trying to “answer this question”
before investigators realized the futility of the enterprise.’

Clearly, attempts to define local energy and momentum failed, except in
special circumstances (spacetimes with Killing vectors).

Penrose (1982): one can still define quasi-local energy and momentum,
i.e. associated with a closed spacelike surface. It refers only to the
geometry of the 2-surface and the extrinsic curvature quantities for its
embedding in the spacetime.
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A Rehabilitation of Pseudotensors? Nester et al. (’98, ’18)

Chen, Nester and collaborators (1998, 2015, 2018) have defended a
rehabilitation of pseudotensors. They argue that pseudotensors:

(a) Do provide a description of energy and momentum conservation.
(b) Have well-defined values in each system of coordinates.
(c) Give at infinity the expected values of the total energy and
momentum.

I will look at (c) more closely.
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Chen, Nester et al. (1998, 2018)

The superpotential, Uµλν , determines the boundary term as a 2-surface
integral that contributes to the Hamiltonian:

H(N) =

∫
Σ

NµHµ +

∮
∂Σ

B(N) , B(N) =
1

2
Nλ Uµνλ dΣµν

where Σ is a spacelike hypersurface and Nµ is a vector field that
generates displacements along Σ.

Noether’s theorem implies that Hµ is proportional to the equations of
motion, and so the Hamiltonian reduces to a boundary term, which is
given by the superpotential. And so, the pseudotensor gives the quasilocal
energy (it depends only on the choice of coordinates on ∂Σ not Σ).

Chen, Nester et al. argue that different choices of pseudotensors in the
literature correspond to different such boundary terms. The latter specify
the variational problem, i.e. which fields are held fixed at the boundary.
Regardless of controversies about pseudotensors: the boundary term
determines the boundary conditions and the quasilocal energy.
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Brown and York’s (1993) Quasilocal Stress-Energy Tensor

Brown and York (1993) use an analogue of the Hamilton-Jacobi method
from classical mechanics: they define energy and momentum as the
conjugates of the classical action. Up to terms proportional to the
equations of motion, these are given by boundary terms.
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Brown and York’s (1993) Quasilocal Stress-Energy Tensor

S =
1

2κ

∫
M

d4x
√
−g R +

1

κ

∫ t′′

t′
d3x
√
h K︸ ︷︷ ︸

extrinsic curvature of hypersurface Σ

− 1

κ

∫
3B

√
−γ Θ︸ ︷︷ ︸

extrinsic curvature of 3B

+ S ref + Smatter

δS = (eom) +

∫ t′′

t′
d3x P ij δhij +

∫
3B

d3x τ ij δγij + (matter bdy terms) .

The reference term subtracts the same expression, “on a reference
spacetime” (e.g. Minkowski space). It is needed to make the expressions
finite (more on this later). The result is:

τ ij = − 1

κ

(
Θ γ ij −Θij

)
+ (subtracted terms) .

The boundary stress-energy tensor satisfies one of Einstein’s equations:
∇i τ

ij = −T nj , where T nj is the energy-momentum tensor with one index
projected normally, and the other tangentially, to 3B. Thus there is a
contribution from the matter that passes through the boundary.
If the boundary three-metric γij possesses a Killing vector field ξi , then
τ ij defines a conserved charge, which is conserved if T nj = 0.
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AdS-CFT

Sebastian De Haro On Noether’s Theorem and Gauge-Gravity Duality



Noether’s Second Theorem for General Relativity
Quasi-Local Energy and Momentum

The asymptotic stress-energy tensor in Gauge-Gravity Dualities

A Brief Introduction to AdS-CFT
The Dual Stress-Energy Tensor
Finite ambiguities and boundary conditions

A Brief Introduction to AdS-CFT (‘holography’)

Gauge-gravity duality is a conjectured duality (an isomorphism) between:
(i) String theory in a (d + 1)-dimensional spacetime that is

asymptotically locally anti-de Sitter (AdS). At low energies: supergravity.
(ii) A quantum field theory (usually, conformal: CFT: no gravity!) on

the conformal boundary of this manifold, i.e. in d dimensions. The CFT
is strongly coupled if (i) is weakly coupled.

The duality is, roughly, as follows: to each field, of mass m, in the gravity
theory corresponds an operator O∆(x) of dimension ∆(m) in the CFT
(e.g. O∆=4 = TrF 2 in supersymmetric Yang-Mills theory).

As we approach the boundary, fields in AdS typically have a leading
non-normalizable mode and a sub-leading, normalizable, mode. The
value of the normalizable mode corresponds to the expectation value,
〈O∆(x)〉, of the operator in a particular boundary state (detemined by
the leading value of the field). The value of the non-normalizable mode
coresponds to a boundary source, J(x), that couples to the operator in
the Lagrangian, i.e. by a term

∫
ddx J(x)O(x).
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A Brief Introduction to AdS-CFT (Maldacena 1997, Witten 1998)

At the semi-classical level, the AdS-CFT correspondence can be
summarised by the following statement (in Euclidean signature):

exp
(
−S on-shell

supergravity[φ(r , x)]
) ∣∣∣

r∆−d φ(r ,x)|r=0 = J(x)
=

〈
e
∫

ddx J(x)O(x)
〉

=: ZCFT[J] =: exp (−WCFT[J])

(Here, φ(r , x) stands for a (collection of) scalar field(s), and r = 0 is the
boundary. The correspondence holds for vector and tensor fields as well.)

Correlation functions of arbitrary numbers of operators
〈O(x1) · · · O(xn)〉 can be calculated by taking functional derivatives of
the partition function.

One- and two-point functions: the classical gravitational action
suffices, and there is complete agreement with the CFT.

Higher-point functions: need to take into account quantum (string
theory) corrections, which appear as higher-curvature (higher-derivative)
terms in the effective action.
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Example: a 2-point function

Consider a conformally coupled scalar field in AdS4, i.e. d = 3. Solve the
equations of motion by expanding asymptotically, i.e. near r = 0:

Φ(r , x) = r φ(0)(x) + r2 φ(1)(x) + . . .

Requiring that the solution is regular at r =∞ gives:

Φ(r , x) =
1

π2

∫
d3x ′

r2

(r2 + (x− x′)2)2
φ(0)(x)

= r φ(0)(x) +
r2

π2

∫
d3x ′

φ(0)(x
′)

(x− x′)4
+ . . .

⇒ 〈O∆=2(x)O∆=2(x ′)〉J=0 =
δ2WCFT[J]

δJ(x) δJ(x ′)

∣∣∣
J=0

=
1

π2(x− x′)4
,

as expected for a scalar operator of dimension 2 in a CFT.
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The Dual Stress-Energy Tensor (De Haro et al., 2000; Balasubramanian Kraus, 1999; Larsen et al. ’99)

In quantum field theories, the metric is usually fixed to, say, a flat metric.
But we can consider quantum field theories on a fixed curved background
metric gij(0)(x), and regard gij(0)(x) as a source for the stress-energy
tensor. In this way the expectation value of the stress-energy tensor of
the QFT is given by the functional derivative of the partition function:

〈Tij(x)〉 =
2
√
g(0)

δWCFT[g(0)]

δg ij
(0)(x)

Gravity description: gij(0) is the asymptotic metric along the boundary
directions, up to a conformal factor. A theorem of Fefferman and
Graham (1985, 2012) guarantess that in an open neighbourhood of the
boundary we can write the metric in Poincaré normal form:

ds2 =
`2

r2
dr2 + γij(r , x) dx i dx j =

`2

r2

(
dr2 + gij(r , x) dx i dx j

)
,

gij(0)(x) := gij(0, x) .
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The Dual Stress-Energy Tensor (De Haro et al., 2000; Balasubramanian Kraus, 1999; Larsen et al. ’99)

We can use the Brown-York approach to write the on-shell gravity action
as a function of the arbitrary boundary metric, gij(0)(x).
The duality then identifies the generating functional of the CFT with the
on-shell gravity action, so that we get the following identification:

〈Tij(x)〉 =
2
√
g(0)

δWCFT[g(0)]

δg ij
(0)(x)

(‘holographic stress-energy tensor’)

≡ 2
√
g(0)

δSon-shell[g(0)]

δg ij
(0)(x)

=
d `d−1

16πGN

g(d)ij(x) + (local terms) = τij .

Thus the duality identifies the quasi-local Brown-York stress-energy
tensor with the stress-energy tensor of the CFT. Here, g(d)(x) is the
d-th term in the Taylor expansion of the metric gij(r , x) around r = 0.

This gives a completely general procedure to calculate the
stress-energy tensor: take any solution, Taylor expand the metric
around r = 0, and calculate the d-th coefficient.
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Examples

Three-dimensional BTZ black hole (Balasubramanian and Kraus, 1999):

〈T00〉 =
M

2π`
, 〈T01〉 = − J

2π`

AdS4-Schwarzschild black hole:

〈T00〉 =
RS

8πG `
+ . . . ⇒ M =

RS

2GN

.

4D solutions with self-dual Weyl tensor, Cµναβ = 1
2 εµνγδ Cαβ

γδ

(De Haro, 2009):

〈Tij〉 =
`2

8πG
Cij [g(0)] =

`2

16πGN

εi
kl ∇(0)

k

(
Rjl [g(0)]−

1

4
g(0)jl R[g(0)]

)
integrated to: W [Γ(0)] = −1

4

∫
Tr

(
Γ(0) ∧ dΓ(0) +

2

3
Γ(0) ∧ Γ(0) ∧ Γ(0)

)
.
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Boundary diffeomorphisms

In the presence of sources, the boundary stress-energy tensor is not
conserved, but satisfies an identity that relates its covariant divergence to
the expectation value of the operators that couple to the sources.
Consider the partition function:

ZCFT[g(0), φ(0)] =
〈

exp

∫
ddx
√
g(0)

(
1

2
g ij

(0) Tij − φ(0)O
)〉

.

Demand its invariance under infinitesimal changes of coordinates:

δg(0)ij = ∇i ξj +∇j ξi ,

which yields the (sometimes called ‘Ward’) identity:

∇j 〈Tij〉 = 〈O〉 ∂iφ(0) .

One can check that this result is reproduced, on the gravity side, by the
identity of Brown and York (1993) for a scalar field coupled to gravity:

∇j τ
ij = −T ni .

For Noether’s theorem in connection with boundary symmetries, see
Papadimitriou and Skenderis (2005).
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Holographic renormalization

Renormalization: the stress-energy tensor, if calculated directly from the
supergravity action, is divergent (because of the infinite volume: recall
the need for a “reference spacetime”). Thus in the previous examples we
regularized the action imposing a cutoff r = ε, and renormalized adding
boundary counterterms to the action (afterwards taking limε→0) that:

(i) Do not change the equations of motion.
(ii) Are local in the boundary coordinates. They are of the type:∫

ddx
√
γ,
∫

ddx
√
γ R[γ], and higher powers. Likewise for matter fields.

(iii) Render the on-shell action and the stress-energy tensor finite.

This way of renormalizing has a clearer interpretation than the old
subtraction method: namely, as counterterms in the CFT.

The requirement of finiteness only fixes the IR divergent part of the
effective action (counterterms). Finite boundary terms can still be
added. If the Chen, Nester et al. results are correct, then the finite term
ambiguity should be related to the possibility of defining different
pseudotensors.
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Bulk diffeomorphisms

For odd boundary dimension d , the stress-energy tensor τij ≡ 〈Tij〉 is
covariant under bulk diffeomorphisms that preserve the Poincaré normal
form of the metric.

But for even d , the renormalized Brown-York quasi-local stress-energy
tensor transforms anomalously under bulk diffeomorphisms that
reduce to a conformal transformation on the boundary.

This matches the conformal anomaly of the CFT on a non-flat
background, and it implies that the stress-energy tensor is not traceless
quantum mechanically. This is well-known, and it does not signal an
inconsistency of the QFT on a curved background: for the conformal
symmetry is not a defining symmetry of the theory—it just happens to be
there in the classical theory. (It is an “accidental symmetry” of the
classical limit of the theory’).
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Casimir energy in CFT

In electrodynamics, the zero-point energy of the electromagnetic field
between two conducting plates manifests itself as a force between the
plates (the Casimir effect).

In CFT, a conformal transformation from a flat to a compact space
(e.g. from R2 → S2) can have a similar effect. While the anomaly
vanishes on R2, it is non-zero in S2:

A = − c

24π
R , c ≡ 3`

2GN

.

And so, even though 〈T00(R2)〉 = 0, we find 〈T00(S2)〉 ∼ c R.
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Bulk diffeomorphisms

Consider diffeomorphisms that “fix the location of the boundary r = 0”:

δx i = ξi (x) , δr = −r ξ(x) .

Requiring that these diffeomorphisms fix: (i) the Poincaré normal form of
the metric and (ii) the boundary metric, implies:
(Brown and Henneaux (1986), De Haro (2017)):

∇(0)i ξj(x) +∇(0)j ξi (x) =
2

d
g(0)ij(x)∇k

(0) ξk and ξ(x) = − 1

d
∇kξk .

This is the conformal Killing equation, which is precisely the condition
for ξi (x) to be a conformal transformation. This is the well-known
statement that ‘the asymptotic symmetry group of AdS is the conformal
group’, now for an arbitrary boundary metric.

Henningson and Skenderis (1998) argue that the regularized gravity
action, Sreg, is invariant under such diffeomorphisms. This is a
consequence of the fact that these diffemorphisms fix (i) and (ii).
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Bulk diffeomorphisms

But the counterterms that are added to make the action finite are not
invariant. The peccant counterterm is a logarithmically divergent term:

Lct(d) =
√
g(0) a(d) log ε ,

where the combination
√
g(0) a(d) is invariant: δ(

√
g(0) a(d)) = 0.

The counterterm then transforms as:

δLct(d) =
√
g(0) a(d)

δε

ε
= −√g(0) a(d) ξ =: 8πGN

√
g(0) A ξ

δWren = − 1

16πGN

∫
ddx
√
g(0)A ξ , A = anomaly

so that the renormalized generating functional (and the bulk action)
depend on the chosen representative of the boundary conformal structure.

Thus in odd bulk dimensions, infrared divergences break part of the bulk
diffeomorphisms. Only the bulk diffeomorphisms that do not yield a
boundary Weyl transformation are symmetries of the renormalized action.
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Finite ambiguities and boundary conditions

The anomaly comes from the ambiguity (choice) in separating
between finite and divergent terms in the action. Once such a choice
is made, and after transforming the action by a diffeomorphism,
additional finite terms come from the divergent part of the action: so that
the finite (renormalized) action effectively changes in an anomalous way.

The finite part of the action is ambiguous for a second reason: finite
boundary counterterms can always be added without changing the
equations of motion (cf. Nester et al.). These finite boundary terms
correspond to different boundary conditions for the fields on the
boundary. Adding a suitable boundary term, we can go from a Dirichlet
to a Neumann boundary problem, where instead of fixing the field on the
boundary, we fix its canonically conjugate momentum.
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Finite ambiguities and boundary conditions

Take for example a conformally coupled scalar field in AdS with a cutoff
r = ε. The usual Dirichlet boundary problem is as follows:

S =

∫
Mε

d4x
√
g

(
1

2
(∂Φ)2 − 8

`2
Φ2

)
+

1

2`

∫
∂Mε

d3x
√
γ Φ2

⇒ δS = (eom)− 1

`

∫
d3x φ(1) φ(0) , where we solved the KG equation in AdS:

Φ(r , x) =
r

`
φ(0)(x) +

r2

`2
φ(1)(x) + . . . The expectation value follows from the action:

〈O∆=2〉 ≡ πΦ :=
δS

δφ(0)
= −1

`
φ(1) .

This is the standard AdS-CFT dictionary.
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Finite ambiguities and boundary conditions

We can change the Dirichlet boundary condition into a Neumann
boundary condition by adding a boundary term to the action (the eom
are unchanged):

S̃ = S +
1

`

∫
d3x φ(1) φ(0)

⇒ δS̃ = (eom) +
1

`

∫
d3x φ(0) δφ(1) ≡ 0 .

Thus we are holding the sub-leading term, φ(1), fixed on the boundary.

Boundary interpretation: since it is φ(1) rather than φ(0) that is being

held fixed, φ(1) is interpreted as a source for an operator Õ(x) in the
CFT. By dimensional counting, this operator has dimension 1, rather
than dimension 2. The expectation value of this operator is calculated, as
usual, by taking the functional derivative:

〈Õ∆=1〉 =
1

`
φ(0) gives an alternative AdS-CFT dictionary.
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Finite ambiguities and boundary conditions

In this simple case, the two CFT’s are each other’s Legendre transforms.
In the gravity theory, this works because the two modes are actually
normalisable, and so their roles can be interchanged.
There is also a mixed boundary problem if we add a boundary term that
depends only on φ(0):

S ′ = S +

∫
d3x F(φ(0))

⇒ δS ′ = −1

`

∫
d3x φ(1) δφ(0) +

∫
d3x F ′(φ(0)) δφ(0) ≡ 0

⇒ φ(1) = ` F ′(φ(0))

〈O∆=2〉 = 0 .

The same can be done for gravity: different boundary terms give rise to
different boundary conditions there as well. There an interesting
boundary interpretation... but that is a story for another day...
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On background-independence

‘There are some claims that string theory does not need a background
independent formulation, and can be instead defined for fixed boundary
or asymptotic conditions as dual to a field theory on a fixed
background, as in the AdS/CFT correspondence. To respond to
this... it is hard to see how a theory defined only in the presence of
boundary or asymptotic conditions, as interesting as that would be, could
be taken as a candidate for a complete formulation of a fundamental
theory of spacetime. This is because the boundary or asymptotic
conditions can only be interpreted physically as standing for the presence
of physical degrees of freedom outside the theory... Hence, it seems
reasonable to require that a quantum theory of gravity, which is supposed
to reproduce general relativity, must also make sense as a theory of a
whole universe, as a closed system.’ (Smolin 2005, pp. 23-24).
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On background-independence (De Haro 2015)

Background-independence is not a precise term with a fixed meaning
(see e.g. Belot (2011), Giulini (2007)). But one can distinguish:

(i) A minimalist sense of background-independence, closely
modelled on the properties of general relativity. This sense admits
boundary or initial conditions, which are required to solve Einstein’s
equations regardless of the value of the cosmological constant. It does
not admit initial or boundary conditions that are not required to solve the
dynamical equations of motion.

(ii) An extended sense: the initial or boundary conditions also must be
dynamically determined. One should beware of promoting this to an a
priori standard for background-independence: for it would render GR
background-dependent. Thus throwing the baby out with the bath-water!

The boundary conditions used in standard AdS-CFT are of course of the
type admitted under (i), i.e. they are required by Einstein’s equations.
In the minimalist sense, AdS-CFT is fully background-independent.
Perhaps recent developments on TT̄ -deformations (and other approaches
that “look into the bulk”) can teach us about (ii)...

Sebastian De Haro On Noether’s Theorem and Gauge-Gravity Duality



Noether’s Second Theorem for General Relativity
Quasi-Local Energy and Momentum

The asymptotic stress-energy tensor in Gauge-Gravity Dualities

A Brief Introduction to AdS-CFT
The Dual Stress-Energy Tensor
Finite ambiguities and boundary conditions

Lee Smolin on background-independence (2018)

Lee Smolin seems to agree, since he now makes a distinction between
background structures that are solutions of dynamical equations, and
those that are not:

‘What I mean when I say that a theory should be
background-independent is there is no background structures, such as a
geometry in an asymptotic region, which is not a solution to dynamical
equations of motion but simply a choice made, an arbitrary choice made
in the construction of the theory.’
(Beyond Spacetime summer school, 2018).
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Summary

1 Noether, Klein, and Hilbert on GR: Noether’s theorem gives Bianchi
identities not conservation laws. Einstein: introduce a pseudotensor.

2 Penrose (1982): consider quasilocal quantities. Brown and York
(1993) give one such construction (quasilocal stress-energy tensor):
not conserved unless there are Killing vectors on the boundary.

3 AdS-CFT:

Brown-York stress-energy tensor ≡ 〈Tij〉CFT .

4 It needs to be renormalized:

bulk diffeo invariance broken ≡ conformal anomaly in CFT.

5 Finite term ambiguities in the action sometimes give rise to a
different AdS-CFT dictionary.
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Thank you!
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